
Journal of Electrical Engineering, Vol. 74, No. 3, 2023, pp. 184-187

 sciendo

PAPER__

1 Slovak University of Technology, Faculty of Electrical Engineering and Information Technology,

Institute of Multimedia Information and Communication Technologies, Bratislava, Slovakia
2 Pan-European University, Institute of Applied Informatics/Faculty of Informatics, Bratislava, Slovakia

p.farkas@ieee.org

https://doi.org/10.2478/jee-2023-0024, Print (till 2015) ISSN 1335-3632, On-line ISSN 1339-309X
© This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License

(http: //creativecommons.org/licenses/by-nc-nd/4.0/).

On adding security to RLL - LDPC CCSDS codes without additional redundancy

Peter Farkaš1,2

In this paper it is presented that security can be added to three RLL LDPC codes specified by the Consultative Committee for Space Data Systems

codes without additional redundancy and if some round conditions are valid, this can be done without the necessity to change the encoding and

decoding procedures. The concept for obtaining lightweight security could be of interest for space communication, for communication in IoT or

other networks in which the nodes are resource constrained.

Keywords: security, keyspace, LDPC codes, CCSDS codes, RLL codes, space communication, IoT

1. Introduction

Security and trustworthiness are enablers for most

applications in space and IoT communication [1-3]. In space and

IoT the energy, computational and hardware resources, which

can be used for secure communication implementation are

constrained. Therefore, at the present time the so-called

lightweight security is considered as a possible solution. In

lightweight security algorithms there has to be a tradeoff

between complexity and robustness.

Numerous review publications are dealing with lightweight

security for IoT [3-5]. Therefore, it will be not repeated and the

interested reader can consult [1-5].

Recently in [6] it was shown that RLL properties can be

implemented into the CCSDS-LDPC codes specified in [7]. This

can be done without additional redundancy and in some

circumstances without the need to change the decoding

procedures for the original error correcting codes [8]. The

approach presented in [6] was based on adding a so-called

modifier to the encoded codewords with reordered symbols at

the transmitting side. The influence of these changes can be

eliminated at the receiver in the cases presented in [8].

The question arises if light security can also be implemented

similarly into these CCSDS-LDPC codes. In this manuscript it

is shown that the answer is positive.

2. Standard CCSDS-LDPC codes

The LDPC codes specified in [7] are binary linear block

codes - with the following basic parameters: (128, 64), (256,

128), (512,128). In the pair (n, k), n and k denote codeword

length and dimensionality of the code respectively. The codes

are specified using the following parity check matrices:

7 2 14 6 0 13

6 15 0 1 0 7

1 4 1 15 14 11 3

0 1 9 13 14 1

M M M

M M M

M M M

M M M

 =

I Φ Φ Φ Φ 0 Φ Φ I

Φ I Φ Φ Φ I 0 Φ Φ
H

Φ Φ I Φ Φ Φ I 0 Φ

Φ Φ Φ I Φ Φ Φ I 0

 (1)

31 15 25 0 20 12

28 30 29 24 1 20

2 8 0 28 1 29 21

18 30 0 30 25 26

M M M

M M M

M M M

M M M

 =

I Φ Φ Φ Φ 0 Φ Φ I

Φ I Φ Φ Φ I 0 Φ Φ
H

Φ Φ I Φ Φ Φ I 0 Φ

Φ Φ Φ I Φ Φ Φ I 0

 (2)

63 30 50 25 43 62

56 61 50 23 37 26

3 16 0 55 27 56 43

35 56 62 11 58 3

M M M

M M M

M M M

M M M

 =

I Φ Φ Φ Φ 0 Φ Φ I

Φ I Φ Φ Φ I 0 Φ Φ
H

Φ Φ I Φ Φ Φ I 0 Φ

Φ Φ Φ I Φ Φ Φ I 0

, (3)

where
MI ,

M0 ,
Φ are M M identity, all zero and -th right

circular shifts of the identity matrix respectively and M=n/8. (In

1H ,
2H and

3H , the values of M are 16, 32 and 64 respectively.)

Operator denotes modulo two additions (further denoted as

mod 2).

We will call the four rows in the matrices (1)-(3) macro-rows.

For example, the first macro-row from top in (1) is in Fig. 1.

Fig. 1. Scatter chart of first macrorow from top in (1). The

dotted lines correspond to ones in particular 16x16 circulants.

mailto:p.farkas@ieee.org

Journal of Electrical Engineering, Vol. 74, No. 3, 2023 185

The LDPC codes could be encoded using the generator matrices

in systematic form:

4[]M=G I W . (4)

Submatrix W could be obtained as follows [7]:
1[]−=W P Q , (5)

where P and Q are submatrices composed of the last and first

4M columns of the corresponding control matrices given by

Eqns. (1-3).

3. RLL-LDPC codes obtained from standard

CCSDS-LDPS

In [6] it was shown that RLL properties can be implemented

into the standard codes [7] without additional redundancy and

without the need to change the decoding procedures if some

round conditions are valid [8]. The method is based on adding

vectors called modifiers to encoded codewords with reordered

symbols. It is illustrated in Fig. 2. The addition of vectors is in

the finite field GF(2).

Fig. 2. The method for adding RLL properties into LDPC codes

specified in [7] illustrated using a Binary Symmetric Channel

(BSC) channel.

The purpose of the reordering is to obtain consecutive

intervals of ones in each row from the macro-row and at the same

time to minimize the gaps between them. In Fig. 3 the first

macro-row from Fig. 1 is illustrated after the reordering.

If the rows in which are these intervals have even Hamming

weight it is possible to invert an uneven number of symbols in

them with the effect that not all symbols in these intervals in

codewords will be the same [9]. Therefore, the modifier must

have an uneven number of ones in the coordinates corresponding

to these intervals. Consequently, after the modifier is added to

the reordered codewords, the resulting binary vector will have

RLL properties.

Fig. 3. Scatter chart of the first macrorow from top in (1). Bold

lines correspond intervals containing 8 ones each and shadow

lines correspond to the gaps in which the other symbols are

positioned. Each gap corresponds to 8 binary symbols.

Observing Fig. 1 and Fig. 3 one can see that there are 8

intervals containing 8 ones each in which the modifier has to

have an uneven number of ones and 8 intervals corresponding to

gaps in which this restriction is not valid for the modifier.

Therefore, the worst case run length of identical symbols in the

RLL-LDPC code defined by (1) is in this case 22. The same

value is valid also for codes given by (2) and (3). The reason is

that in codes (2) and (3) there are 16 rows and 32 rows with 8

consecutive ones respectively. Consequently, in codes (2) and

(3) there are 16 gaps and 32 gaps with 8 symbols respectively.

4. Concept for adding lightweight security

to three RLL-LDPC CCDS

There is a broad spectrum of requirements which have to be

fulfilled if secure communication has to be achieved. They

correspond to different and distinct secure communication topics

such as authentication, authorization, certification, copy

resistance, covertness, integrity, ownership protection, secrecy

and others. However, there are some overlaps between them and

the central role in many applications plays the topics of classical

cryptography [10].

In classical cryptography encryption functions are usually

classified into two kinds. The first one is the block encryption

function and the second one is the stream encryption function. In

the first case the plaintext is divided into blocks of symbols –

so called message blocks denoted as x . Each message block is

mapped into the so called ciphertext block y .

186 Peter Farkaš: On adding security to RLL - LDPC CCSDS codes …

()f=y x (6)

It is supposed here that the vectors x and y will have

coordinates from a (2)GF and both will have length .

In (6) the index denotes a key which is an element from

a set denoted as keyspace.

In the case of stream ciphering the message has unspecified

length. However, in practice the stream encryptor in order to be

practically useable, has to have limited internal memory.

We will restrict our attention further only to so called additive

stream ciphers. In these schemes the keystream is generated by

a finite-state machine. It should resemble a random stream with

equiprobable binary symbols. However, because the keystream

is generated by finite state machine it is deterministic and can be

predicted if the initial seed is known. Therefore, it is denoted as

a pseudo random sequence (PN-sequence). The encryption

function in this case is a mod 2 addition of the keystream to the

datastream.

Taking this into account one can see an obvious similarity

with the method for obtaining RLL properties in LDPC codes

described earlier and illustrated in Fig. 2. Particularly the

modifier is a binary vector and it is added mod 2 to the reordered

codewords of the LDPC code. The restriction that in the “bold”

intervals (denoted further as b-intervals) the modifier has to have

an uneven number of ones makes it necessary to adapt the

ciphering method to this requirement. In other words, the

common additive stream cipher cannot be used directly. It must

be adapted to the blocks of codewords and also to some

subblocks named intervals as will be seen further.

In the following text, notes and concepts will be discussed

heuristically as to how the modifier can be adapted in order that

after its addition the transmitted words will have security

properties. At the same time an estimation of the upper bounds

for the key space size will be made using analytical approach for

particular LDPC codes.

The LDPC codes defined by Eqns. (1-3) have b-intervals of

the same length 8 [6]. Therefore, we can first estimate the

number of combinations in which an uneven number of ones can

be placed into the positions in the modifier corresponding to only

one b-interval denoted N

8 8 8 8

128
1 3 5 7

N

= + + + =

 (7)

The value of N is very small and therefore the fixed pattern

of ones in each b-interval of the modifier would not provide any

significant security. This implies that it is necessary to pseudo-

randomly change the pattern for each b-interval. This can be

combined with pseudorandom patterns for the positions of gaps

(denoted as g-intervals below) which are between the b-intervals.

There are 256 combinations of how the modifier can be designed

in the positions corresponding to one g-interval.

We can now estimate the upper bounds on the sizes

(cardinality) of key space for particular LDPC codes and give

some more details on the constraints which have to be considered

in future research when a concrete hardware or software

implementation will be designed following the concept

presented in this paper.

A. Security obtained by only addition of the modifier

First it will be supposed that only the addition of the modifier

will be used to achieve lightweight security. In the LDPC code

defined by Eqn. (1) there are altogether 8 b-intervals and

8 g-intervals. Consequently, the key space for this code is

()
8 64 120 36

1 .2 2 1.33 10N N= = (8)

For the other two LDPC codes we get the following formulae

()
16 128 240 72

2 .2 2 1.77 10N N= = (9)

()
32 256 480 144

3 .2 2 3.12 10N N= = (10)

B. Security obtained by only interleaving the positions of

symbols in the codewords

The numbers obtained using Eqns. (8-10) are relatively small

and therefore it is desirable to increase the size of the keyspace

further. One option is to use specific reordering (interleaving) of

codeword symbols for each codeword of the LDPC code. Each

reordering has to fulfill the condition that the 8 ones will be

consecutive (in other words form the b-interval) in each uneven

row of the first macro-row from the top in Eqns. (1-3). It is also

necessary that the b-intervals and g-intervals alternate, each

having 8 bits. However, it is possible to distinguish 8 shifts by

one bit of this alternating structure of intervals.

In one b-interval there are 8!possibilities how the positions

could be permutated. The positions of b-intervals inside a

codeword by themselves could be also permutated in 8! ways.

Consequently, the overall numbers of position permutations in

particular codes are

 ()
2 314 99

1 8. 8! .64! 2 1.65 10P = (11)

 ()
2 734 225

2 8. 8! .128! 2 5.02 10P = (12)

 ()
2 1702 512

3 8. 8! .256! 2 2.25 10P = (13)

C. Security obtained by combining A and B

In case that the lightweight security obtained by approach A

and approach B has to be increased further, it is possible to

Journal of Electrical Engineering, Vol. 74, No. 3, 2023 187

combine them. The cardinality of the keyspace can be increased

significantly by combining permutations (cardinality given by

Eqns. (11-13) with all possible modifiers b-intervals

(cardinalities given by Eqns. (8-10).

The modifier can be generated by obtaining appropriate

blocks or vectors from a PN generator. These must have uneven

Hamming weights in subblocks corresponding to b-intervals.

On the other hand, the reordering the codeword symbols

(denoted as interleaving) must also preserve the property that the

b-intervals and g-intervals alternate. We get the following

estimations for the upper bound of key space cardinalities for

particular LDPC codes if this combined approach is used

()
8 64 2 434 135

1 8. .2 .(8!) .64! 2 2.19 10N = (12)

()
16 128 2 974 297

2 8. .2 .(8!) .128! 2 8.86 10N = (13)

()
32 256 2 2182 656

3 8. .2 .(8!) 256! 2 7.04 10N = (14)

The obtained numerical results are summarized in Table I.

Table 1

RLL-

LDP

C

Cardinality upper bounds of keyspace

(approximate)

Modifier
Interleaving

of symbols

Overall

(combined)

(1) 1.33×1036 1.65×1099 2.19×10135

(2) 1.77×1072 5.02×10225 8.86×10297

(3) 3.12×10144 2.25×10512 7.04×10656

Note 1

It has to be noted that similarly as in [6] and [8] the

argumentation is valid that in specific round conditions the

influence of the reordering codeword symbols and the mod 2

addition of the modifier on the transmitting side can be

eliminated on the receiving side. Consequently, the encoding and

decoding procedures of the original CCSDS LDPC codes need

not be modified if the proposed method for implementing RLL

and security properties is used.

5. Conclusions

In this paper a concept allowing for adding RLL properties

together with security properties into three LDPC codes

specified by the CCSDS without additional redundancy was

presented. The concrete structure and realizations of the software

or hardware encryptor was not presented and it remains for

further research to fill this gap. The encryptor in the first order

should achieve robustness against different attacks. If it is

designed for IoT applications or other networks in which the

nodes have restricted resources it is desired that it will have

limited energy consumption, computational complexity and

memory requirements.

Acknowledgement

This work was supported by the Slovak Research and

Development Agency under Contract no. APVV-19-0436 and it

was also supported by the European Union (COST CA22168,

6G-PHYSEC) and by the Scientific Grant Agency of the

Ministry of Education of the Slovak Republic and the Slovak

Academy of Sciences (grant VEGA 1/0477/18).

References

[1] “Space Data Link Protocols-Sumary of Concepts and

Rationale”, Informational Report CCSDS 130.3-G-1,

Green Book, March 2008

[2] “Space Data Link Security Protocol.” CCSDS 355.0-B-2,

Blue Book, July 2022

[3] M. N. Khan, A. Rao and S. Camtepe, "Lightweight

Cryptographic Protocols for IoT-Constrained Devices:

A Survey," in IEEE Internet of Things Journal, vol. 8, no.

6, pp. 4132-4156, 15 March 15, 2021, doi:

10.1109/JIOT.2020.3026493.

[4] S. Ganiev and Z. Khudoykulov, "Lightweight

Cryptography Algorithms for IoT Devices: Open issues

and challenges," 2021 International Conference on

Information Science and Communications Technologies

(ICISCT), 2021, pp. 01-04,

doi: 10.1109/ICISCT52966.2021.9670281.

[5] S. Windarta, S. Suryadi, K. Ramli, B. Pranggono and

T. S. Gunawan, "Lightweight Cryptographic Hash

Functions: Design Trends, Comparative Study, and Future

Directions," in IEEE Access, vol. 10, pp. 82272-82294,

2022, doi: 10.1109/ACCESS.2022.3195572.

[6] P. Farkaš and M. Rakús, “Adding RLL properties to four

CCSDS LDPC codes without increasing their

redundancy,” Computing and Informatics, vol. 42, no. 1,

pp. 157-190 , 2023, doi: 10.31577/cai_2023_1_157

[7] "TC Synchronisation and Channel Coding," Blue Book,

CCSDS 131.0-B-4, Washington, DC, USA,

Recommended Standard, Issue 4, July 2021

[8] P. Farkaš and T. Páleník, "On Soft Decoding of Some

Binary RLL-Transmission Codes in Systems with

Coherent BPSK Modulation," Cybernetics & Informatics

(K&I), pp. 1-5, 2022,

doi: 10.1109/KI55792.2022.9925949.

[9] P. Farkaš, F. Schindler, "Run length limited error control

codes construction based on one control matrix," Journal

of Electrical Engineering, vol. 68., no. 4, June 2017,

pp. 322-324, doi: 10.1515/jee-2017-0046/

[10] R. E. Blahut, “Cryptography and secure communication,”

Combridge University Press, UK, 2014.

Received 7 June 2023
