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On adding security to RLL - LDPC CCSDS codes without additional redundancy 
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In this paper it is presented that security can be added to three RLL LDPC codes specified by the Consultative Committee for Space Data Systems 

codes without additional redundancy and if some round conditions are valid, this can be done without the necessity to change the encoding and 

decoding procedures. The concept for obtaining lightweight security could be of interest for space communication, for communication in IoT or 

other networks in which the nodes are resource constrained. 
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1. Introduction 

Security and trustworthiness are enablers for most 

applications in space and IoT communication [1-3].  In space and 

IoT the energy, computational and hardware resources, which 

can be used for secure communication implementation are 

constrained. Therefore, at the present time the so-called 

lightweight security is considered as a possible solution. In 

lightweight security algorithms there has to be a tradeoff 

between complexity and robustness. 

Numerous review publications are dealing with lightweight 

security for IoT [3-5]. Therefore, it will be not repeated and the 

interested reader can consult [1-5].  

Recently in [6] it was shown that RLL properties can be 

implemented into the CCSDS-LDPC codes specified in [7]. This 

can be done without additional redundancy and in some 

circumstances without the need to change the decoding 

procedures for the original error correcting codes [8]. The 

approach presented in [6] was based on adding a so-called 

modifier to the encoded codewords with reordered symbols at 

the transmitting side. The influence of these changes can be 

eliminated at the receiver in the cases presented in [8].  

The question arises if light security can also be implemented 

similarly into these CCSDS-LDPC codes.  In this manuscript it 

is shown that the answer is positive. 

 

 

2. Standard CCSDS-LDPC codes  

The LDPC codes specified in [7] are binary linear block 

codes - with the following basic parameters: (128, 64), (256, 

128), (512,128). In the pair (n, k), n and k denote codeword 

length and dimensionality of the code respectively. The codes 

are specified using the following parity check matrices: 
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where 
MI , 

M0 , 
Φ are M M identity, all zero and  -th right 

circular  shifts of the identity matrix respectively and M=n/8. (In

1H , 
2H and 

3H , the values of M are 16, 32 and 64 respectively.) 

Operator   denotes modulo two additions (further denoted as 

mod 2).  

We will call the four rows in the matrices (1)-(3) macro-rows. 

For example, the first macro-row from top in (1) is in Fig. 1. 

 

Fig. 1. Scatter chart of first macrorow from top in (1). The 

dotted lines correspond to ones in particular 16x16 circulants. 
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The LDPC codes could be encoded using the generator matrices 

in systematic form: 

4[ ]M=G I W .       (4) 

Submatrix W  could be obtained as follows [7]:  
1[ ]−=W P Q ,       (5) 

where P and Q  are submatrices composed of the last and first 

4M columns of the corresponding control matrices given by 

Eqns. (1-3). 

 

 

3. RLL-LDPC codes obtained from standard  

CCSDS-LDPS 

 

In [6] it was shown that RLL properties can be implemented 

into the standard codes [7] without additional redundancy and 

without the need to change the decoding procedures if some 

round conditions are valid [8]. The method is based on adding 

vectors called modifiers to encoded codewords with reordered 

symbols. It is illustrated in Fig. 2. The addition of vectors is in 

the finite field GF(2). 

 

 
 

Fig. 2. The method for adding RLL properties into LDPC codes 

specified in [7] illustrated using a Binary Symmetric Channel 

(BSC) channel.  

 

The purpose of the reordering is to obtain consecutive 

intervals of ones in each row from the macro-row and at the same 

time to minimize the gaps between them. In Fig. 3 the first 

macro-row from Fig. 1 is illustrated after the reordering.  

If the rows in which are these intervals have even Hamming 

weight it is possible to invert an uneven number of symbols in 

them with the effect that not all symbols in these intervals in 

codewords will be the same [9]. Therefore, the modifier must 

have an uneven number of ones in the coordinates corresponding 

to these intervals. Consequently, after the modifier is added to 

the reordered codewords, the resulting binary vector will have 

RLL properties.   

 

 
 

Fig. 3. Scatter chart of the first macrorow from top in (1). Bold 

lines correspond intervals containing 8 ones each and shadow 

lines correspond to the gaps in which the other symbols are 

positioned.  Each gap corresponds to 8 binary symbols. 

 

Observing Fig. 1 and Fig. 3 one can see that there are 8 

intervals containing 8 ones each in which the modifier has to 

have an uneven number of ones and 8 intervals corresponding to 

gaps in which this restriction is not valid for the modifier. 

Therefore, the worst case run length of identical symbols in the 

RLL-LDPC code defined by (1) is in this case 22. The same 

value is valid also for codes given by (2) and (3). The reason is 

that in codes (2) and (3) there are 16 rows and 32 rows with 8 

consecutive ones respectively. Consequently, in codes (2) and 

(3) there are 16 gaps and 32 gaps with 8 symbols respectively. 

 

 

4. Concept for adding lightweight security  

to three RLL-LDPC CCDS 

 

There is a broad spectrum of requirements which have to be 

fulfilled if secure communication has to be achieved. They 

correspond to different and distinct secure communication topics 

such as authentication, authorization, certification, copy 

resistance, covertness, integrity, ownership protection, secrecy 

and others. However, there are some overlaps between them and 

the central role in many applications plays the topics of classical 

cryptography [10]. 

In classical cryptography encryption functions are usually 

classified into two kinds. The first one is the block encryption 

function and the second one is the stream encryption function. In 

the first case the plaintext is divided into blocks of  symbols – 

so called message blocks denoted as x . Each message block is 

mapped into the so called ciphertext block y . 
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( )f=y x    (6) 

 

It is supposed here that the vectors x and y  will have 

coordinates from a (2)GF and both will have length  .  

In (6) the index  denotes a key which is an element from 

a set  denoted as keyspace.  

In the case of stream ciphering the message has unspecified 

length. However, in practice the stream encryptor in order to be 

practically useable, has to have limited internal memory. 

We will restrict our attention further only to so called additive 

stream ciphers. In these schemes the keystream is generated by 

a finite-state machine. It should resemble a random stream with 

equiprobable binary symbols. However, because the keystream 

is generated by finite state machine it is deterministic and can be 

predicted if the initial seed is known. Therefore, it is denoted as 

a pseudo random sequence (PN-sequence). The encryption 

function in this case is a mod 2 addition of the keystream to the 

datastream. 

Taking this into account one can see an obvious similarity 

with the method for obtaining RLL properties in LDPC codes 

described earlier and illustrated in Fig. 2. Particularly the 

modifier is a binary vector and it is added mod 2 to the reordered 

codewords of the LDPC code. The restriction that in the “bold” 

intervals (denoted further as b-intervals) the modifier has to have 

an uneven number of ones makes it necessary to adapt the 

ciphering method to this requirement. In other words, the 

common additive stream cipher cannot be used directly. It must 

be adapted to the blocks of codewords and also to some 

subblocks named intervals as will be seen further.  

In the following text, notes and concepts will be discussed 

heuristically as to how the modifier can be adapted in order that 

after its addition the transmitted words will have security 

properties.  At the same time an estimation of the upper bounds 

for the key space size will be made using analytical approach for 

particular LDPC codes. 

The LDPC codes defined by Eqns. (1-3) have b-intervals of 

the same length 8 [6]. Therefore, we can first estimate the 

number of combinations in which an uneven number of ones can 

be placed into the positions in the modifier corresponding to only 

one b-interval denoted N  

 

     
8 8 8 8

128
1 3 5 7

N
       

= + + + =       
       

  (7) 

 

The value of N is very small and therefore the fixed pattern 

of ones in each b-interval of the modifier would not provide any 

significant security.  This implies that it is necessary to pseudo-

randomly change the pattern for each b-interval. This can be 

combined with pseudorandom patterns for the positions of gaps 

(denoted as g-intervals below) which are between the b-intervals. 

There are 256 combinations of how the modifier can be designed 

in the positions corresponding to one g-interval.  

We can now estimate the upper bounds on the sizes 

(cardinality) of key space for particular LDPC codes and give 

some more details on the constraints which have to be considered 

in future research when a concrete hardware or software 

implementation will be designed following the concept 

presented in this paper.  

 

 

A. Security obtained by only addition of the modifier  

 

First it will be supposed that only the addition of the modifier 

will be used to achieve lightweight security. In the LDPC code 

defined by Eqn. (1) there are altogether 8 b-intervals and  

8 g-intervals. Consequently, the key space for this code is 

 

( )
8 64 120 36

1 .2 2 1.33 10N N= =     (8) 

 

For the other two LDPC codes we get the following formulae 

 

( )
16 128 240 72

2 .2 2 1.77 10N N= =    (9) 

 

( )
32 256 480 144

3 .2 2 3.12 10N N= =    (10) 

 

B. Security obtained by only interleaving the positions of 

symbols in the codewords 

 

The numbers obtained using Eqns. (8-10) are relatively small 

and therefore it is desirable to increase the size of the keyspace 

further. One option is to use specific reordering (interleaving) of 

codeword symbols for each codeword of the LDPC code. Each 

reordering has to fulfill the condition that the 8 ones will be 

consecutive (in other words form the b-interval) in each uneven 

row of the first macro-row from the top in Eqns. (1-3). It is also 

necessary that the b-intervals and g-intervals alternate, each 

having 8 bits. However, it is possible to distinguish 8 shifts by 

one bit of this alternating structure of intervals. 

In one b-interval there are 8!possibilities how the positions 

could be permutated. The positions of b-intervals inside a 

codeword by themselves could be also permutated in 8! ways. 

Consequently, the overall numbers of position permutations in 

particular codes are 

 

       ( )
2 314 99

1 8. 8! .64! 2 1.65 10P =      (11) 

       ( )
2 734 225

2 8. 8! .128! 2 5.02 10P =      (12) 

       ( )
2 1702 512

3 8. 8! .256! 2 2.25 10P =      (13) 

 

 

C. Security obtained by combining A and B  

 

In case that the lightweight security obtained by approach A 

and approach B has to be increased further, it is possible to 
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combine them. The cardinality of the keyspace can be increased 

significantly by combining permutations (cardinality given by 

Eqns. (11-13) with all possible modifiers b-intervals 

(cardinalities given by Eqns. (8-10).  

The modifier can be generated by obtaining appropriate 

blocks or vectors from a PN generator. These must have uneven 

Hamming weights in subblocks corresponding to b-intervals.  

On the other hand, the reordering the codeword symbols 

(denoted as interleaving) must also preserve the property that the 

b-intervals and g-intervals alternate. We get the following 

estimations for the upper bound of key space cardinalities for 

particular LDPC codes if this combined approach is used 

 

( )
8 64 2 434 135

1 8. .2 .(8!) .64! 2 2.19 10N =               (12) 

( )
16 128 2 974 297

2 8. .2 .(8!) .128! 2 8.86 10N =           (13) 

( )
32 256 2 2182 656

3 8. .2 .(8!) 256! 2 7.04 10N =       (14) 

 

The obtained numerical results are summarized in Table I. 

 

Table 1 

 

RLL-

LDP

C 

Cardinality upper bounds of keyspace 

(approximate) 

Modifier 
Interleaving 

of symbols 

Overall 

(combined) 

(1) 1.33×1036 1.65×1099 2.19×10135 

(2) 1.77×1072 5.02×10225 8.86×10297 

(3) 3.12×10144 2.25×10512 7.04×10656 

 

Note 1  

It has to be noted that similarly as in [6] and [8] the 

argumentation is valid that in specific round conditions the 

influence of the reordering codeword symbols and the mod 2 

addition of the modifier on the transmitting side can be 

eliminated on the receiving side. Consequently, the encoding and 

decoding procedures of the original CCSDS LDPC codes need 

not be modified if the proposed method for implementing RLL 

and security properties is used.  

 

 

5. Conclusions 

 

In this paper a concept allowing for adding RLL properties 

together with security properties into three LDPC codes 

specified by the CCSDS without additional redundancy was 

presented. The concrete structure and realizations of the software 

or hardware encryptor was not presented and it remains for 

further research to fill this gap. The encryptor in the first order 

should achieve robustness against different attacks. If it is 

designed for IoT applications or other networks in which the 

nodes have restricted resources it is desired that it will have 

limited energy consumption, computational complexity and 

memory requirements. 
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