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Scalable codes with locality and availability derived from tessellation  

via [7, 3, 4] Simplex code graph  

 

Peter Farkaš1,2 

 

A new family of scalable codes with locality and availability for information repair in data storage systems for e-health 

applications was presented recently. The construction was based on a graph of the [7, 3, 4] Simplex code. In this paper it is 

shown that the construction can be generalized via tessellation in a Euclidian plane. The codes obtained have new interesting 

recoverability properties. They can in some cases repair damage to many storage nodes in multiple connected graphs via 

sequential decoding, which is similar to healing wounds in biological systems. The advantages of the original codes, namely 

the availability, functionality, efficiency and high data accessibility, will be preserved also in these new codes. The 

computational complexity and communication costs of their incrementation will remain constant and modest. These codes 

could be adapted to disaster recovery because it is straightforward to place the nodes so that the graph is easily mapped on  

a real structure in space.  
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1 Introduction 

The storing, processing and analytics of the data 

collected from connected devices is changing healthcare 

dramatically. In information systems for e-health 

applications information has to be stored not only 

securely but also reliably, with high availability, 

functionality, efficiency and high data accessibility [1]. 

However, the main challenge in this area is the volume 

of data that must be protected. In [2] it was stated that 

healthcare companies experienced, just 3 years before 

this publication, a 900% increase in data volume, which 

they have to deal with. Therefore, the storage systems for 

healthcare data should be scalable and the cost of this 

scalability has to be restricted in order to make them 

economically sustainable. To keep the costs low, 

extending the storage volume should be computa-

tionally simple and the volume of data which has to be 

communicated during this has to be restricted.  

The storage system in its present form is usually 

composed of a large number of servers distributed in 

space. As a rule, some servers break from time to time 

and the information which they store has to be protected 

against loss using some redundant servers [3]. The 

simplest approach is to make more copies of the data. 

The drawback of this technique is that it requires 

relatively high redundancy and costs. A better technique 

is to use erasure correcting codes. This can significantly 

decrease the required redundancy or even minimize it in 

cases where so called Maximum Distance Separable 

(MDS) codes are used. Therefore, Reed Solomon codes 

with erasure decoding are very popular nowadays in 

practical storage such as the Hadoop Distributed File 

System, Google’s Colossus, Yahoo Object Store, 

Quantcast File System, Facebook’s f4, Baidu’s Atlas and 

Backblaze’s Vaults [4]. The introduction of storage 

distributed in space invoked new challenges and interest 

in constructing new codes with different properties for 

data recovery. If the datacenter has a distributed 

character, then the resources (or costs) which have to be 

spent for data recovery contain not only redundant 

storage nodes but also the communication bandwidth 

needed during data repair [5-7]. The actual research how 

to achieve it is directed in three basic directions. The first 

is oriented on decoding methods, which minimize the 

repair bandwidth for practical Reed Solomon Codes  

[8-12]. The second is focused on constructing new codes, 

which are adapted from scratch to this requirement, so 

called Locally Repairable Codes (LRC) [13-17]. The 

third is a hybrid approach between the previous two [18]. 

Recently it was discovered that beyond locality it is also 

desirable to implement availability into codes for data 

recovery in distributed storage systems [20-25]. One 

approach how to construct such codes is based on graphs 

or hypergraphs [26-28]. Using a graph of the [7, 3, 4] 

Simplex code in [29] a new family of codes with locality 

and availability was proposed, namely with scalability.  
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In this paper a generalization of these codes is 

presented using two-dimensional (2D) Euclidian plane 

tessellation. The obtained codes have interesting regene-

ration properties. Namely they are able to regenerate in 

some cases a high number of lost nodes (erased 

symbols), as long as they are restricted in some 2D area 

and some other conditions are fulfilled. In this paper the 

new property is denoted as “wound healing” because it 

has some similarity to this process in bio-logical systems.   

The paper is organized as follows. Section 2 contains 

a very brief basic introduction to the theory of linear 

block codes, codes with locality, codes with availability 

and codes with locality and availability is given. Section 

3 introduces the new family of scalable code with 

locality and availability obtained by tessellation of the 

two-dimensional Euclidian plane. Section 4 contains 

concluding remarks and a note on further research which 

can be done in this area in future. 

 

2 Linear block codes with locality, availability  

and scalability 

2.1 Linear block codes 

A linear block code C is a k-dimensional subspace of 

an n-dimensional vector space over a finite field GF(q). 

Usually, the codes are denoted using their basic 

parameters as [n, k, dm] codes, where 𝑛 is the codeword 

length and 𝑘 is the number of information symbols which 

this codeword transports. The third parameter dm is  

a code distance, which is the minimal Hamming distance  

dm = min{d (ci, cj} between any two codewords ci ϵ C 

and cj ϵ C. The Hamming distance of two codewords is 

the number of symbols by which these two codewords 

differ.  

 

2.2 Codes with locality 

Codes with locality allow correction of erased 

symbols using only a small number of other (local) 

symbols. More precisely, the i-th symbol ci ;  1 ≤i ≤ n  

of a codeword c ϵ C, where C  is an [n, k, dm] linear block 

code, has locality r if ci can be recovered by accessing at 

most r other symbols from c. 

An [n, k, dm] code 𝐶 has locality 𝑟 and is denoted as  

𝑟-LRC if and only if all codeword symbols of all its 

codewords have locality 𝑟. 

 

2.3 Codes with availability 

Availability is a property which allows recovering 

one erased codeword symbol in more than one way by 

accessing different disjoined sets of codeword symbols. 

More precisely, the 𝑖-th symbol ci;  1 ≤i ≤ n of a code-

word c ϵ C, where C is an [n, k, dm] linear block code, has 

availability t if and only if each ci can be recovered  

in t ways by accessing at least t disjoined sets (called 

repair sets) of other symbols in that c. An [n, k, dm] linear 

block code has availability t if and only if each ci can be 

recovered in t ways by accessing at least t dis-joined sets 

of other symbols in each c ϵ C. It is denoted as t-LRC if 

and only if all codeword symbols of all its codewords 

have availability t. 

 

2.3.1 Codes with locality and availability 

The i-th symbol ci;  1 ≤i ≤ n of a codeword c ϵ C, 

where C is an [n, k, dm] linear block code, has locality  

r and availability t if and only if each ci can be recovered 

in t ways by accessing at least t disjoined repair sets  

of other symbols in that c and each repair set has at most 

r symbols. An [n, k, dm] linear block code has locality  

r and availability t if and only if each ci can be recovered 

in t ways by accessing at least t disjoined sets of other 

symbols in each c ϵ C. Such a code is usually denoted as 

(r, t)-LRC in literature. 

 

2.4 Codes with locality, availability and scalability 

The scalable codes with locality and availability 

denoted as S-(r, t) are (r, t)-LRC, which allows increa-

sing the protected memory volume in such a way that the 

basic parameters r and t will not be degraded.  

From a practical point of view it is also desirable that 

the scalability of S-(r, t) codes is not very complex 

computationally and the demands on communication are 

not very high. It is also practical if they remain constant 

for each increased unit of additional memory volume. 

In Fig. 1, a family of S-(2, t >3) codes are illustrated 

using graphical representation, which was obtained  

in [29] from a [7, 3, 4] Simplex code which is in fact  

a (2, 3)-LRC.  

 

 

Fig. 1. Graphically represented family of S-(2, t >3) 

codes. The following simplified notation is used: Roman 

numerals denote information symbols I, II, III, IV, V, VI, 

VII and Arabic numbers denote parity symbols: 1, 2, 3, 

4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14. 
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The storage volume increase (incrementation) which 

was described in [1] in more detail could be repeated 

indefinitely. It is obvious that the prevalent part of 

information symbols will have availability t=7. Only the 

leftmost and rightmost information symbols will have 

t=3 (in Fig. 1, these are symbols denoted as II and VII) 

and the information nodes which are second from each 

end will have t=5 (in Fig. 1, these are symbols denoted 

as I and VI). The incrementation will not decrease the 

locality and availability of the original [7, 3, 4] Simplex 

code. 

 

3 Codes with locality, availability and scalability 

    obtained by 2D Euklid’s plane tessellation 

The simplest approach to generalize the construction 

of S-(2, t ≥ 3) codes described in the previous section is 

illustrated in Fig. 2.  

The idea is to tessellate the two-dimensional (2D) 

Euclidian space (plane) with a pattern composed of 

connected graphs of the original [7, 3, 4] Simplex code 

as illustrated in Fig. 2. In it the black circles correspond 

to servers containing redundancy and the white circles to 

the servers containing information. In the depicted 

fragment of the plane there are 81 nodes containing 

information (payload) and 320 nodes containing 

redundancy. Therefore, n=401, k=81 and the overall 

coderate Rc ≈ 0.2. All nodes have the locality equal to 

two and minimal availability three. 

 

 

Fig. 2. Illustration of the new family of 2D- S-(r, t) codes 

 

 

 

 

 

It is obvious that in general, during storage volume 

increase in the new codes family the availability and 

locality will not be degraded. The computational and 

communication expenses will also remain modest and 

restricted similarly to the family of codes described  

in [29]. 

Most of the information nodes which are not on 

border of the fragment have availability equal to twelve.  

This construction also has some other advantages  

in practice: It has a clear structure which makes it easy to 

keep an overview during data center set up (placement of 

servers), its maintenance and makes it easy to increase 

the storage volume (theoretically indefinitely). The 

structure allows making the code easily location-

conscious and consequently suitable for disaster 

recovery. Related information on coding for storage for 

disaster recovery could be found in [30]. This advantage 

can be synergistically strengthened by the following 

observations. 

A not so obvious advantage of the new family of 

codes is their ability to recover a significant number of 

nodes in cases they are lost in restricted areas of the 

tessellation pattern. For example, if the lost nodes are 

inside the area bordered by dashed lines, as illustrated  

in Fig. 3 they all can be recovered.  

 

 

 

 

Fig. 3. Illustration of two wounds – restricted areas  

in which all nodes are lost or damaged (forming 

connected graphs). The areas are inside the dashed lines 

here. 
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For example, the regeneration of the lost nodes inside 

the restricted upper area (wound) in Fig. 3 can be realized 

in alphabetical order as illustrated in Fig. 4. The wound 

healing can be done using sequential decoding [31, 32] 

or sequential and parallel decoding [33].  

 

 

Fig. 4. Example of sequential decoding (wound healing) 

in the proposed 2D- S-(r, t) code. 

 

The question arises how to proceed in regeneration of 

a wound in the proposed codes in general? One 

straightforward heuristic approach, which could be used, 

is to start the regeneration on the border between lost and 

non-lost nodes and restore each node, which is at least in 

one check equations with two non-lost nodes. The 

regeneration attempts could go as deep into the center of 

the wound as possible. When this direction to the center 

will not allow us to restore other nodes, then movement 

along the border, for example counterclockwise could be 

attempted. After finishing one cycle we can continue 

with the next one. The algorithm can stop if one cycle is 

made without regenerating any single node.  

After finishing there could be still some nodes not 

regenerated and in this case we can say that decoding was 

not successful, but in practice, even in such a case, lots 

of nodes could be restored. 

Observing the specific example of wound healing 

property in Fig. 4, a natural question can be asked: “How 

many nodes can be regenerated in one wound”? The 

question is not possible to answer easily in general case, 

because it depends on its form and even on its position 

with respect to other wounds as will be illustrated later. 

Even to answer a simpler question when a node cannot 

be restored is quite involved but it can be answered for 

some cases. The examples in Fig. 5 and Fig. 6 illustrate 

why we have to be careful when looking for the answer 

on the above question. In Fig. 5 we can see that in the 

wound circumscribed with punctured line we cannot 

regenerate even one single node. In contrast, in the 

wound bordered by punctured line in Fig. 6 it is possible 

to regenerate all nodes. It is remarkable that in Fig. 6 the 

wound contains only two less nodes than the wound  

in Fig. 5. 

 

 

Fig. 5. Example of an unhealable wound in the proposed 

2D- S-(r, t) code 

 

 

Fig. 6. Example of a healable wound in the proposed  

2D- S-(r, t) code  
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In Fig. 7, another interesting wound example is 

depicted. It contains 23 nodes and no single node can be 

regenerated in it. However, if any one of the nodes 

contained in this would were not corrupted, all nodes 

could be regenerated. 

 

 

Fig. 7. Illustration of an unhealable wound containing 23 

nodes  

 

There could be multiple wounds at the same time and 

all can be healed if they do not belong to a class of 

unhealable wounds.  

It is illustrated in Fig. 8 where two wounds are 

depicted. It is interesting that the wound which is on the 

left side could be healed only after the wound on the right 

side is healed. 

 

 

Fig. 8. Illustration of two consecutively healable 

wounds. After the wound on the right is healed, the left 

one can also be healed.  

 

These few illustrated examples can be concluded with 

a statement that further research is needed, probably 

using computerized simulations to give some more exact 

or quantitative estimation on wound healing abilities of 

the proposed codes. 

After this rather heuristic discussion and before further 

research is done, it seems safe to make the conjecture that 

the proposed family of scalable codes with availability 

and locality has wound healing abilities which could be 

useful for disaster recovery.  

 

4 Conclusion 

In this paper a generalization of the family of scalable 

codes from [30] with locality and availability, which 

could be useful for data regeneration in data centers and 

for disaster recovery, was presented. Construction of this 

family of codes could be described as tessellation of a 

Euclidian two-dimensional plane with graphs of [7, 3, 4] 

Simplex codes. In this paper it was also pointed out that 

the new family of the proposed codes has an additional 

interesting property, namely the ability to regenerate 

multiple nodes which form a connected graph in some 

cases. This property is named in this paper as wound 

healing. Further research is necessary to give some more 

exact or quantitative estimation on the wound healing 

abilities of the new codes. 
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