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Exploring and mitigating hybrid rank attack in RPL-based IoT networks 

 

Mehdi Rouissat 1,2, Mohammed Belkehir 3, Allel Mokaddem 3,  

Merahi Bouziani 4, Ibrahim Sulaiman Alsukayti 5 

 
Despite the widespread adoption of the Routing Protocol for Low-power and Lossy Networks (RPL) in IoT environments, its 

inherent limitations in addressing security vulnerabilities have left IoT networks vulnerable to ongoing attacks. This paper 

introduces a novel intrusion detection system tailored specifically for IoT networks, with a focus on mitigating attacks at the 

network's edge. The study presents the Hybrid Rank Attack (HRA), a sophisticated threat exploiting RPL vulnerabilities by 

alternately advertising decreased and increased rank values in control messages. Extensive experimentation evaluates the 

detrimental effects of HRA on critical network metrics including exchanged messages, energy consumption, PDR, latency, and 

memory footprint. Additionally, a lightweight and distributed countermeasure algorithm is proposed to effectively mitigate the 

impact of HRA. Simulation-based evaluations demonstrate significant reductions in control overhead (68.7%) and energy 

consumption (61.83%), with minimal additional RAM utilization (1.05%). This lightweight solution enhances the resilience of 

RPL-based IoT networks against HRA threats. 
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1 Introduction 

In recent years, our world has undergone a trans-

formative technological revolution propelled by the 

pervasive integration of IoT networks into every facet of 

our daily lives [1-3]. The advent of IoT networks has 

ushered in a profound shift, creating self-automated 

environments geared towards facilitating seamless data 

exchange between processes. This has been instrumental 

in leveraging internet capabilities [4]. Despite the 

remarkable evolution exhibited by IoT technology, they 

remain vulnerable to various attacks, posing a significant 

challenge for researchers and network administrators  

[5-7]. This work specifically addresses the rank attack, 

where malicious actors attempt to manipulate the 

hierarchical structure, potentially disrupting the 

communication and collaboration between IoT devices. 

In response to this challenge, our paper introduces  

a novel attack termed the Hybrid Rank Attack (HRA). 

This attack method involves a malicious node alternately 

advertising both decreased and increased rank attack 

values in its DIOs. The aim is to simultaneously impact 

networks through both the Decrease Rank Attack (DRA) 

and the Withheld Parent Attack (WPA), while also 

inducing victim nodes to continually switch their 

preferred parents. This tactic results in destabilizing the 

network's edge, causing significant disruption. We 

compare the detrimental effects of our proposed attack 

with the well-known decrease rank attack [8], where 

illegitimate nodes advertise lower rank values to gain 

favorable network positions and capture a maximum 

number of nodes as hostages. Additionally, we present  

a lightweight, distributed algorithm wherein each node 

monitors the activity of its preferred parents as  

a countermeasure. Our proposed solution demonstrates 

efficiency in terms of generated and received control 

overhead, energy consumption, and node resource 

utilization. 

 

2 RPL overview and HRA attack description 

2.1 RPL overview and rank calculation  

Routing Protocol for Low-Power and Lossy Net-

works (RPL) is a protocol designed for Low-Power and 

Lossy Networks (LLNs), which typically consist of 

limited and resource-constrained devices in terms of 

processing, storage, and energy [9]. RPL facilitates 

efficient and reliable communication among such  
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devices by establishing and maintaining routes in the 

network. In RPL, the devices within a network are 

organized into a loop-free topology of nodes, directing 

traffic upwards towards a root node (see Fig. 1), creating 

a tree-like topology, known as a DODAG (Destination 

Oriented Directed Acyclic Graph) [10]. The assignment 

of rank values to network nodes follows a specific 

algorithm. The rank value of a node is determined by 

adding the rank value advertised by the parent node, to 

the Link Metric to that parent. The calculation of the 

rank value is governed by the objective function, which 

employs the following formula: 

 

 

𝑅𝑎𝑛𝑘𝑛𝑜𝑑𝑒 = 𝐿𝑚 × (1 + 𝑓𝑙𝑜𝑜𝑟(𝑅𝑝 𝑀𝐻𝑅𝐼⁄ ))    (1) 

where 

▪ Lm  is the link metric, 

▪ Rp  is the rank of the parent, 

▪ MHRI  is the Minimum Hope Rank Increase. 

Then, the metric value is then multiplied by the 'floor' 

function which computes the greatest integer less than or 

equal to the given value.  Nodes closer to the root node 

will have lower rank values, while nodes further away 

will have higher rank values. The objective function 

defines the criteria for calculating these rank values, 

considering factors such as energy consumption, link 

quality, and path length [11].

 

 

 

 

 

 

 

Fig. 1. RPL topology and DODAG construction 

 

In addition, RPL employs the Trickle algorithm [12] 

during the creation and upkeep of topology to minimize 

control traffic and network overhead. This algorithm 

regulates the transmission frequency of DIO messages 

based on network stability. 

 

2.2 Attack description 

In its fundamental design, RPL lacks mechanisms to 

prevent the advertisement of falsified rank values. This 

absence leaves a vulnerability that can be exploited by 

malicious nodes, allowing them to broadcast counterfeit 

rank values with the intention of becoming parents to  

a significant portion of the network's nodes. As a result, 

the Decreased Rank Attack (DRA) is a well-known 

attack in RPL-based IoT networks, by which the 

malicious node advertises a lower rank value than the 

reel value it should advertise. Consequently, this 

malicious node can be frequently selected by the other 

nodes as the preferred parent, and gain a strategic 

position in the network by having numerous indirect and 

direct children nodes. On the other hand, an increased 

rank attack, known as Worst Parent Attack (WPA) is 

also a well-known attack, in which the node announces 

a higher rank value than its own, targeting the network 

topology, where usually it is not chosen as preferred 

parent despite its good position, which leads to create 

suboptimal paths. 

Both attacks; DRA and WPA are based on 

advertising a falsified rank value. In this article, we 

propose a Hybrid Rank Attack (HRA), where the 

malicious node advertises, alternatively, a decreased 

Rank attack value and an increased rank attack in its 

DIOs. The main purpose of the attack is to affect the 

networks by both attacks at once; DRA and WPA, 

besides pushing the victim nodes to continually switch 

their preferred parents. The hybrid attack may create 

instability in the topology, where it is selected as the 

preferred parent in the decreased rank attack, and it is 

replaced when advertising a decreased rank value, where 

the topology experiences the two attack effects besides 

the permanent parent switching behavior. According to 

RPL-Contiki, replacing a preferred parent requires  

a node to: 

▪ Send a No-Path DAO message to its current preferred 

parent,  

▪ Send a regular DAO to the newly selected preferred 

parent, 

▪ Resent the trickle timer. 

This additional activity engenders useless exchanges 

of DAO messages, and instability in the network, which 

pushes the nodes to continually reset their DIO trickle 

timers and send more frequent DIO messages. 
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Considering DODAG 1 in the example network 

presented in Fig. 1, let’s assume that node 6 initiates an 

HRA attack by advertising a decreased rank value at 

first. This would cause changes to the topology as 

neighbor nodes such as nodes 5 and 7 would reattach to 

node 6. As a result, node 5 and 7 would unnecessarily 

switch their preferred parents and perform the three 

actions mentioned above. Upon completing the DRA, 

node 6 then starts advertising an increased rank value 

causing nodes 5 and 7 to switch their preferred parent 

back again. Node 6 can keep alternating between the two 

variants of the rank attack to keep the topology unstable. 

As long as the attack stays undetected, DODAG 1 would 

experience frequent unnecessary parent switching 

leading to degraded overall network performance. 

 

3 Related works  

Recent research has seen a surge in efforts to explore 

and address ranks. For example, in [13], the 

susceptibility of RPL to diverse attacks, particularly 

rank-based ones like the decreased rank attack, has been 

thoroughly examined. These studies shed light on the 

potential consequences of such attacks on the network's 

routing hierarchy and overall performance metrics. 

Additionally, in [14], two silent rank attacks, LPRA 

(Like Parent's Rank Attack) and BPRA (Better than 

Parent's Rank Attack), are delineated. LPRA involves  

a malicious node mimicking its preferred parent's rank 

value, while BPRA exploits Contiki RPL inconsi-

stencies to advertise a superior rank without causing 

topology loops. Moreover, findings from experiments 

conducted on randomly constructed topologies reveal 

significant impacts on network behavior, including 

increased control overhead and energy consumption, as 

well as latency surges.  

In [15], a solution named LEACE (Level-based 

Energy-Aware Rank-based Attack Countermeasure) is 

introduced to detect and thwart rank attacks by aligning 

the ranks and levels of nodes. Additionally, in [16], a 

lightweight solution called DSRPL (DIOF-Secure RPL) 

is discussed to combat flooding attacks in RPL-based 

networks. This solution is based on a collaborative and 

distributed security scheme that verifies updates 

received by nodes before trust is established. In [17],  

a streamlined and effective technique for managing and 

containing rank attacks was introduced. A newly 

developed Echelon Metric Based Objective Function 

(EMBOF) was implemented instead of the default RPL 

to verify the validity of the advertised rank. The Echelon 

value is determined through additive collaboration 

between the root node and its associated parent node(s) 

within the RPL network structure. The focus was not 

only to identify the attacker node(s) but also to promptly 

isolate them. In [18], the proposed E-RAD (Enhanced-

Rank Attack Detection) algorithm incorporates a rate-

limiting mechanism to regulate the production of DIO 

(DODAG Information Object) packets. Additionally, it 

employs DIS (DODAG Information Solicitation) 

messages to identify and isolate rank attackers. Should 

an attacker elude detection through these means, their 

presence can be revealed by verifying the consistency of 

hash values in DAO (Destination Advertisement Object) 

messages. Upon detection, an alarm is triggered against 

the rank attackers immediately.  

Other proposals introduced advanced solutions based 

on machine-learning approaches. In [19], a novel 

lightweight multiclass classification-based attack 

detection model tailored for RPL-based sensor 

networks, termed MC-MLGBM, is proposed. This 

model addresses the lack of suitable datasets by 

generating a new dataset through diverse network 

models. Employing optimal feature selection techniques 

and a light gradient boosting machine-based algorithm, 

MC-MLGBM enhances performance in detecting 

multiclass attacks. In [20], an artificial neural network 

(ANN) framework was proposed for identifying 

decreased rank attacks. It comprised three main phases: 

data pre-processing, feature extraction utilizing  

a random forest classifier, and an artificial neural 

network model implemented for detection purposes. 

Another ANN-based solution was also proposed in [ 21] 

which introduced an IDS based on the Multi-Layer 

Perceptron (MLP) neural network to help in verifying 

and classifying normal and abnormal network traffic. In 

[22], the proposed approach was based on employing 

anomaly detection with Support Vector Machines. The 

focus was on the healthcare sector, particularly smart 

hospitals, which present multifaceted challenges.  

The study in [23] focused on a trust-based model to 

enhance security in RPL networks against attacks, 

specifically Rank and Blackhole attacks. The research 

delves into the vulnerabilities posed by these attacks in 

the context of both static and mobile nodes within the 

Internet of Things (IoT) environment. A similar 

approach was also proposed in [24] which was based on 

a mitigation scheme using a trust threshold strategy.  

Moreover, recent works continue to explore solutions 

for various well-known attacks against RPL-based IoT 

networks [25]. These efforts collectively contribute to 

enhancing the security posture of RPL-based IoT 

networks and mitigating the risks posed by different 

types of attacks. In this paper, the proposed solution is 

based on a lightweight approach with limited, where the 

distributed mitigation solution is the major novelty of 

this work as shown in Tab. 1.  
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Table 1. Related work comparison 

Reference Approach Solution Attack 

[15] LEACE 

In-protocol 

Modification 

aligning the rank and level of nodes Increase Rank 

[16] DSRPL 
a collaborative and distributed 

security scheme 
Rank Calculation 

[17] EMBOF-RPL 
Echelon Metric Based Objective 

Function (EMBOF) 
Increase Rank 

[18] E-RAD 
A DIO exchange rate limiting 

mechanism 
Increase Rank 

[19] MC-MLGBM 

Machine Learning 

Multiclass classification-based 

attack detection model 
Increase Rank 

[20] 
An artificial neural network (ANN) 

framework 
Decrease Rank 

[21] 
an ANN-IDS based on the Multi-

Layer Perceptron (MLP)  
Increase Rank 

[22] 
Anomaly detection with Support 

Vector Machines 
Increase Rank 

[23] 

Trust-based Model 

Addressing static and mobile 

environments 
Increase Rank 

[24] A trust threshold strategy Increase Rank 

This study 
In-protocol 

Modification 

A distributed algorithm based on 

Monitoring parent activities 
Hybrid Rank 

 

 

4 Studied topology 

We have chosen a random topology composed of 20 

nodes, including the sink (node 1) and the malicious 

node (node 20), as Fig. 2 shows. Note that the malicious 

node was configured to be three hops away from the 

sink, and to have 7 neighbors. This was set up to 

represent a practical scenario that is approximate 

between the best and worst-case scenarios. 

Z1 motes were utilized in our simulations. Every 

node has the same properties, including the intruding 

node. Equation (1) is used as the basis for obtaining data 

about energy consumption using the powertrace tool, 

which is natively implemented in Contiki. The following 

formula, implemented in a Perl script, is used to 

calculate the energy consumed by a specific node for 

a certain mode in millijoules:   

𝐶𝑜𝑛𝑠𝑢𝑚𝑒𝑑𝑒𝑛𝑒𝑟𝑔𝑦 =
𝐸𝑛𝑒𝑟𝑔𝑒𝑠𝑡 × 𝐼 × 𝑉

𝑅𝑡𝑖𝑚𝑒𝑟
,       (2) 

where 

Energest presents the number of recorded ticks for 

each energy mode, 

I is the current, 

V is the voltage, 

Rtimer is the number of ticks per second. 

 

 

 

 

Fig. 2. Studied topology 
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5 Results and discussion 

In this section, we present and elucidate the 

detrimental impact of the traditional DRA, as well as the 

proposed HRA. We then go on to show how our 

suggested approach might mitigate the impact of the 

HRA. The following metrics and indicators are used to 

evaluate the impact of the attacks and performance of the 

proposed approach:  

▪ Control packet overhead,  

▪ Consumed energy,  

▪ PDR,  

▪ Latency 

▪ Memory footprint. 

 

 

 

 

5.1 Impact of DRA and HRA 

The foundation of both the DRA and HRA attacks is 

the dissemination of a falsified rank value. In this 

subsection, we show the impact of both attacks on the 

different network metrics. 

 

5.1.1 Control overhead 

Table 2 shows the exchanged overhead during 20 

minutes of simulation for the studied scenarios. Note that  

Table 2 is split into two sections: one for the number of 

generated control messages and another for the number 

of forwarded control messages. Table 2 shows that DRA 

causes a remarkable increase in the total overhead from 

931 to 3933 messages, where all the types of generated 

and forwarded messages witnessed that increase, 

especially no-path DAO messages. 

 

     Table 2. Network overhead results: sent messages 

Sent Messages 

 Generated  Forwarded  
Total 

Scenario DIS DIO DAO No-Path DAO DAO No-Path DAO 

Attack free  19 363 178 20 339 12 931 

DRA 19 1148 641 571 1221 333 3933 

HRA 19 1758 902 905 1603 500 5687 

 

 

Conversely, the hybrid attack demonstrates 

a dramatic increase compared to the attack-free case, 

where it shows an increase of 5678 messages. All types 

of messages show that increase, where the most touched 

type is no-path DAO messages. 

The parameters that affected the increase of 

exchanged overhead are summarized in Table 3. The 

obtained results show that the number of received DIOs 

with infinite rank value jumped to 62 messages in DRA 

and to 326 in the case of HRA, where the most 

significant increase is shown in the preferred parent 

changing, where 721 changes in the HRA had been 

recorded compared to only 12 changing in the attack free 

topology. 

On the other hand, 463 loops are detected in HRA 

compared to 242 in DRA and zero loops in the attack-

free topology. The highest number of loops is recorded 

by the malicious node itself, with 44 loops. When the 

malicious node announces a lower value of rank its 

victim children nodes use that value as base rank value, 

and when the malicious node advertises the higher rank 

value (alternative advertisement) it sees the advertised 

rank value from its children victim node lower, which 

create loops in the topology.  

 

Table 3. Statistics of factors leading to trickle timer reset 

 
Attack 

free 
DRA HRA 

Infinite rank 

received 
0 62 326 

Changed preferred 

parent 
12 431 721 

Local repair 0 0 0 

Loops 0 242 463 

 

Table 4. Network overhead results: received messages 

 Received messages 

  Scenario DIS DIO DAO Total 

  Attack free  21 962 544 1527 

  DRA 21 2886 2540 5447 

  HRA 21 4275 3539 7835 

 

Another important parameter is taken into account in 

our analysis, which is the number of received messages, 

see Tab. 4. It can be considered as a decisive parameter 

to analyzing the impact of the attacks in the listening 
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mode. The DRA shows an increase to 5447 received 

messages compared to 1527 received messages in the 

attack free case, where the HRA shows the highest 

record with 7835 received messages, presenting an 

increase of 413%. These obtained results allow to 

understand the variation in the consumed energy, in the 

listening mode in particular. 

 

5.1.2 Energy consumption 

Figure 3 illustrates the consumed energy in the 

studied scenarios, in terms of Low Power Mode (LPM), 

CPU TX, and RX. According to the results, the total 

consumed energy has shown an increase from 26.32 

Joules recorded in the normal topology to 73.8 Joules in 

the DRA, presenting an increase of 280%, that is the 

direct result of the higher exchanged overhead due to the 

instability of the topology. When it comes to the HRA it 

presents an immense increase of 373 % compared to the 

first scenario, which is the result of the highest 

exchanged overhead due to the attack. These results how 

the HRA negatively effects on the node’s energy, which 

has a significant influence on node autonomy and, in 

turn, network longevity. 

 

 

Fig. 3. Energy consumption results 

 

5.1.3 PDR and latency 

PDR (Packet Delivery Ratio) shows the ratio of the 

total number of packets sent by network's nodes and 

successively received by the sink node. Thus, it is 

a metric used to assess the network's end-to-end 

dependability, and evaluate the paths availability toward 

the sink node. The results regarding the PDR are 

presented in Table 6. The results illustrate that PDR 

degrades under the HRA, with a ratio of 60%, while 

a ratio of 79.4% is obtained in the case of DRA. This 

immense deterioration is mostly the result of high traffic 

and collisions of packets as a result of the high 

exchanged overhead, particularly in the neighborhood of 

the malicious node, where the effect of a high ratio of 

parent switching can be observed. The PDR (Packet 

Delivery Ratio) shows the ratio of the total number of 

packets sent by network's nodes and successively 

received by the sink node. Thus, it is a metric used to 

assess the network's end-to-end dependability, and 

evaluate the paths availability toward the sink node. The 

results regarding the PDR are presented in Tab. 5. The 

results illustrate that PDR degrades under the HRA, with 

a ratio of 60%, while a ratio of 79.4% is obtained in the 

case of DRA. This immense deterioration is mostly the 

result of high traffic and collisions of packets as a result 

of the high exchanged overhead, particularly in the 

neighborhood of the malicious node, where the effect of 

a high ratio of parent switching can be observed. 

 

Table 5. PDR and latency results 

Scenario PDR (%) Latency (s) 

Attack free 2 99.7 0.243 

DRA 79.4 0.746 

HRA 60 0.889 

 

The recorded delay for the three scenarios is 

displayed in Table 5. The results show that the HRA had 

a large effect on latency, which increased to 0.746 

seconds in the case of DRA, and up to 0.889 seconds in 

HRA. These results show how damaging is the HRA, 

where all the networks’ parameters have shown 

noticeable degradation. 

 

5.2 Countermeasure 

To address the HRA, a lightweight mitigation 

solution is developed, based on a distributed approach, 

in which every node supervises the activity of its own 

preferred parents, where, as presented in Algorithm 1, 

where “sus_behvr” presents the number of times  

a suspicious behavior is detected. The algorithm works as 

follows: 

▪ DIOs from blacklisted parents are not treated, 

▪ If a node receives a higher rank value from its 

preferred parent more than three times (sus-behvr 

superior or equal to 3), then this parent will be 

removed and blacklisted. Note that making it three 

times is a design parameter, choosing a higher value 

may lead to a delay in detecting the attack whereas 

a lower value may lead to a false positive detection, 
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▪ In order to avoid blacklisting a parent node that is  

a victim of the malicious node, this victim parent 

node will send an infinite rank value in its next DIO 

message right after detecting the malicious 

behavior, discarding the rank value of the suspect 

parent. 

 

Algorithm 1 HRA Mitigation Solution 

Begin 

if (sender is not blacklisted) 

      if (sender is the preferred parent) 

           if (advertised rank = infinite) 

                  sus_behvr = 0  

           else if (advertised rank > node’s rank) 

                   if (sus_behvr  ≥  3) 

                         preferred parent removed 

                         preferred parent blacklisted 

                         sending DIO (rank = infinite) 

                   else 

                         sus_behvr =  sus_behvr + 1 

                   end if 

           end if 

      end if 

else  

        ignore the received DIO message 

end if 

end 

 

This distributed treatment is considered lightweight 

and allows to avoid extra exchange of control messages 

among the nodes or, dedicating additional fields in the 

control messages. The proposed approach has proved its 

efficiency in detecting the malicious behavior as shown 

in Tab. 6. The table shows that the attack is detected by 

the victim nodes after three receiving three times higher 

rank value from the preferred parent, where node 17 was 

the first node that detected the malicious behavior after 

296 seconds, and node 8 was the last one where it 

detected the attack after 361 seconds. 

 

Table 6. The suspect behavior's detection chronology 

Node 

First suspect 

behavior 

Second 

suspect 

behavior 

Third suspect 

behavior 

17 44 s 74 s 296 s 

18 44 s 80 s 296 s 

14 44 s 80 s 296 s 

12 80 s 174 s 350 s 

8 296 s 350 s 361 s 

 

5.2.1 Control overhead 

Table 7, summarizes the obtained exchanged 

overhead before and after implementing the proposed 

mitigation. The results show that the mitigation solution 

has succeeded in bringing down the total overhead to  

a total of 1777 messages, which presents a significant 

decrease. 

Note that the total recorded overhead is affected by 

the quantity of messages before the detection of the 

attack. As depicted by Fig. 4, 83.25% of the total 

overhead had been exchanged before the eighth minute. 

For instance, 265 messages are generated in the last 12 

minutes in the case of the attack-free topology, whereas 

280 messages are generated for the same period after 

implementing the proposed mitigation approach. These 

results prove that the extra messages are generated 

before detecting the malicious behavior. 

 

 

Table 7. Network overhead results: sent messages 

Sent Messages 

 Generated  Forwarded  
Total 

Scenario DIS DIO DAO No-Path DAO DAO No-Path DAO 

Attack free  19 363 178 20 339 12 931 

DRA 19 1148 641 571 1221 333 3933 

HRA 19 1758 902 905 1603 500 5687 

After Solution 19 633 295 144 607 79 1777 

 

  



Journal of Electrical Engineering, Vol. 75, No. 3, 2024                                                               211 

 

 

 

 
 

Fig. 4. Total of generated messages through time 

 

5.2.2 Energy consumption 

As shown in Fig. 5, the developed method effectively 

decreased the consumed energy from 98.42 Joules to 

37.56 Joules, a drop of 61.83%. These obtained results 

validate the effectiveness of the proposed approach in 

reducing the attack's harmful impacts on the consumed 

energy, where the difference in the consumed energy is 

used prior to the attack detection. 

 

 

Fig. 5. Energy consumption before and after implemen-

ting the proposed approach 

 

 

 

 

 

5.2.3 PDR and latency 

The results presented in Table 8 illustrate the 

effectiveness of the proposed solution in mitigating the 

impact of HRA on PDR and Latency. Compared to HRA 

results, the proposed solution succeeded in maintaining 

high PDR and low latency with improvements of more 

than 60% in both. Only a little PDR reduction of less 

than 2% and a latency rise of less than 0.1 seconds were 

experienced by the proposed solution compared to the 

standard RPL.  

 

Table 8. PDR and latency results 

Scenario PDR (%) Latency (s) 

Attack free 2 99.7 0.243 

HRA 60 0.889 

Modified RPL 98 0.311 

 

5.2.4 Memory footprint 

Nodes in RPL networks, and Z1 in particular are 

frequently installed with built-in restrictions. They often 

only have a small amount of Flash Memory and RAM, 

as Table 10 depicts, where the employed Z1 nodes are 

limited to 20 and 100 kilobytes of RAM and ROM, 

respectively. Based on these features, it is essential to 

develop solutions with a tiny memory footprint because 

of the limited processing capacity of the limited storage. 

 

Table 9. Memory footprint results (in Bytes) 

 RAM  ROM  Total 

Standard 

RPL 
4958 47107 52393 

Modified 

RPL 
4994 47621 52943 

 

Table 9 presents a comparison of the used memory of 

the modified protocol and the regular RPL following the 

use of our suggested mitigation approach. Note that the 

implementation of the modified RPL is comprised of 

only the proposed countermeasure incorporated into the 

standard RPL implementation. The results show that the 

updated RPL adds 514 more bytes of ROM memory. 

When it comes to RAM utilization, just 1.05% extra 

RAM footprint is added. These findings demonstrate 

that the suggested strategy is practical, and appropriate 

for LLN networks. 
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6 Conclusions 

This paper has addressed the pressing need for 

enhanced security measures in IoT networks, 

particularly focusing on the vulnerability of the edge part 

of the network to sophisticated attacks. Through the 

introduction of the Hybrid Rank Attack (HRA), we have 

demonstrated the significant impact that such attacks can 

have on critical network metrics. Our findings 

underscore the importance of developing robust 

countermeasures to mitigate the effects of HRA and 

enhance the resilience of RPL-based IoT networks. The 

proposed lightweight and distributed countermeasure 

algorithm represents a significant step forward in 

addressing the challenges posed by HRA. Through 

extensive simulation-based evaluations, we have shown 

that our solution achieves substantial reductions in 

control overhead (68.7%) and energy consumption 

(61.83%), while incurring minimal additional RAM 

utilization. This underscores the effectiveness and 

efficiency of our approach in safeguarding RPL-based 

IoT networks against HRA threats.  

Moreover, the proposed solution in this paper still 

provided effective protection against only the rank attack 

in its hybrid form whereas it remains vulnerable to other 

similar attacks. An example is the version number attack 

which is also based on advertising false DIO 

information. In our future work, the focus would be on 

addressing a more comprehensive solution to mitigate 

the different forms of attacks that rely on manipulating 

the header of the DIO messages. This would be 

combined with extensive exploration of the solution 

focusing on different considerations such as varying-

scale and attack-positioning scenarios. 
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