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Forecasting material quantity using machine learning and times series techniques 

 

Hanane Zermane*1, Hassina Madjour1, Ahcene Ziar1, Abderrahim Zermane2 

 

The current research is dedicated to harnessing cutting-edge technologies within the paradigm of Industry 5.0. The objective is 

to capitalize on advancements in Machine and Deep Learning techniques. This research endeavors to construct robust predictive 

models, utilizing historical data, for precise real-time predictions in estimating material quantities within a cement workshop. 

Machine Learning regressors evaluated based on several metrics, SVR (R-squared 0.9739, MAE 0.0403), Random Forest  

(R-squared 0.9990, MAE 0.0026), MLP (R-squared 0.9890, MAE 0.0255), Gradient Boosting (R-squared 0.9989, MAE 

0.0042). The time series models LSTM and GRU yielded R-squared 0.9978, MAE 0.0100, and R-squared 0.9980, MAE 0.0099, 

respectively. The ultimate outcomes include improved and efficient production, optimization of production processes, 

streamlined operations, reduced downtime, mitigation of potential disruptions, and the facilitation of the factory’s evolution 

towards intelligent manufacturing processes embedded within the framework of Industry 5.0. These achievements underscore 

the potential impact of leveraging advanced machine learning techniques for enhancing the operational dynamics and overall 

efficiency of manufacturing facilities 
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1 Introduction 

In every production system, human operators play  

a crucial role in operations, adjustments, and mainte-

nance. However, the advancement of technology has 

paved the way for automated production systems, 

aiming to minimize human intervention and optimize 

resource utilization. Rapid technological changes have 

presented numerous challenges for factories; however, 

they have also brought about various emerging 

technologies such as the Internet of Things (IoT), big 

data, cloud computing, artificial intelligence, and its 

associated techniques. The concept of Industry 4.0 has 

emerged as a new paradigm for industrialization, 

leveraging these technologies to address these 

challenges effectively. At the heart of Industry 5.0 lies 

the concept of the smart factory is used for process 

optimization [1], production monitoring, control, and 

predictive maintenance [2]. Smart factories utilize these 

cutting-edge technologies to enhance the performance, 

quality, control, and transparency of the manufacturing 

process.  

This research contributes to the advancement of 

Industry 5.0 and smart factories. By integrating IoT, big 

data analytics, cloud computing, artificial intelligence, 

and other intelligent techniques including machine 

learning and deep learning, smart factories create 

context-aware systems that enable both humans and 

machines to perform tasks based on information and data 

obtained from the physical and virtual realms [3-5]. The 

ultimate goal is to drive the factory towards intelligent 

and optimized operations within the industry 5.0 

paradigm. The main focus of this work is the 

development of a predictive model of the quantity of raw 

material needed for the production of the clinker in  

a cement mill workshop in a cement factory (SCIMAT - 

Batna, Algeria) using a suite of machine learning 

algorithms including Support Vector Machine (SVM), 

Random Forest (RF), Multi-Layer Perceptron (MLP), 

and Gradient Boosting. Moreover, the powerful Deep 

Learning techniques used in time series include Long 

Short-Term Memory (LSTM), and the Gated Recurrent 

Unit (GRU).  

The paper presents a comprehensive study that 

encompasses the following key aspects. It begins with 

motivation and contribution, a thorough literature 

review, categorizing previous studies, and highlighting 

the evolution of machine learning methodologies for 

regression tasks, in this domain. We then illustrate the 

data collection process, addressing challenges related to 

data quality and availability. Extensive feature 

engineering is explored to harness the potential of 

various data attributes, enhancing the accuracy and 

reliability of our predictive models. The results and 

discussion section illustrate the findings that underscore 
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the effectiveness of ensemble models and suggest the 

potential benefits of developing specialized models for 

each outcome. These insights could significantly impact 

production measures and contribute to the ongoing 

efforts to reduce downtimes and their associated 

consequences by enabling more accurate predictions of 

material fed to the workshop, enhancing the operational 

dynamics and overall efficiency of manufacturing 

facilities. The paper concludes with final suggestions, 

limitations, and feature studies. 

 

2 Motivation and contribution 

This study makes a valuable contribution to the 

industrial field such as Cement Production, because of 

the several advantages that the work highlights. Details 

about the data, the industrial process, and the deep 

learning techniques applied in the study are highlighted, 

in addition to the focus on findings and their economic 

impact on the real system. The developed model proved 

its efficiency in terms of constructing intelligent models 

that allow optimized participation more than human 

operators.  

Accordingly, we believe that the following research 

directions are required for the next generation of 

prognostic and health management systems (PHM), 

especially in complicated industrial processes with 

enormous real-time alarms and faults. The final 

objective is to obtain a predictive system that can 

forecast in real time.  

 

3 Literature review 

Forecasting is a critical aspect of supply chain 

management and production planning, as accurate 

predictions of material quantities can help organizations 

optimize inventory, reduce costs, and enhance overall 

efficiency. Firstly, Machine Learning (ML) methods 

have been proposed in the academic literature as 

alternatives to statistical ones for time series forecasting. 

Authors in the review article provide insights into 

various forecasting methods and discuss their 

applications [6].  

One of the most powerful machine learning 

techniques is Random Forest (RF) [7]. RF is essentially 

a collection of decision trees whose outcomes are 

aggregated based on voting [8]. The research of Han et 

al. harnessed the power of the random forest (RF) model 

to predict the compressive strength of LC3 [9]. Ma et al. 

used the support vector machine (SVM), decision tree 

(DT), and random forest (RF) models were developed to 

estimate the compressive strength of cement-based 

materials with mining waste. The RF algorithm obtained 

the highest value of R and the lowest value of RMSE, 

demonstrating the highest accuracy than SVM and DT 

[10]. The results of Atasham et al. demonstrated that 

SVM, RF, and ANN can predict the deteriorated 

compressive strength of concrete and align closely with 

the experimental results. In this study, the ANN model 

demonstrated the highest prediction accuracy with an R2 

of 0.924, exhibiting a higher prediction accuracy than 

RF and SVM models. 

Despite the power of machine learning, deep learning 

techniques proved their efficiency in the industrial field. 

In recent years, Deep Learning time series techniques 

such as LSTM and GRU have gained prominence in time 

series forecasting due to their ability to capture complex 

temporal dependencies. Several survey papers provided 

an overview of various deep learning techniques, 

including LSTM and GRU, for forecasting [11-13].  

The LSTM technique has been widely used in various 

fields of research involving sequential data, such as 

natural language processing [14], speech recognition 

[15], time series analysis, and machine translation. The 

GRU was developed as an effective alternative to the 

LSTM architecture [16, 17]. 

The present literature review explores many 

applications of deep learning techniques, including 

LSTM and GRU in forecasting since their introduction 

[18, 19]. LSTM is utilized in predicting equity price with 

corporate action events, and student performance 

prediction. In addition, their application for mining 

public opinion forecasting, as well as in the public health 

field for State of health estimation of Lithium-Ion 

batteries [20-23]. In its term, the GRU is applied for 

several uses; including, the prediction of reservoir 

parameters through well-logging data [24]. In most 

studies, LSTM and GRU are both utilized in forecasting 

situations combined with the Recurrent Neural 

Networks (RNN) for forecasting the electrical load in  

a power system. The models were tested, and the GRU 

model achieved the best performance in terms of 

accuracy and the lowest error. Results of Abumohsen et 

al. show that the GRU model achieved an R-squared of 

90.228%, a Mean Square Error (MSE) of 0.00215, and  

a Mean Absolute Error (MAE) of 0.03266 [25]. The 

literature study presents a variety of models and methods 

for prediction problems. Each method has its strengths 

and weaknesses, and the choice of model depends on the 

data available and the study's specific context.  

 

4 Methods 

The paper discusses the intricacies of data collection, 

addressing challenges related to data quality and 

availability. Rigorous preprocessing techniques are 

employed to ensure the reliability and relevance of the 

data used in model development. This research employs 

a suite of machine learning algorithms for the prediction 

of the quantity of material needed for the production of 



Journal of Electrical Engineering, Vol 75, No. 3, 2024                                                                  239 

 

 

the clinker, including Support Vector Machine (SVM), 

Random Forest (RF), Multi-Layer Perceptron (MLP), 

and Gradient Boosting. Moreover, time series 

techniques including LSTM and GRU are also selected 

for this task. SVM are supervised learning algorithms 

used for classification (SVC) and regression (SVR) 

tasks, particularly effective when dealing with non-

linearly separable data. SVM identifies the optimal 

hyperplane that maximizes the margin between classes 

in the feature space [26]. Especially useful for scenarios 

where linear separation is not feasible. SVM employs the 

kernel trick to handle non-linear relationships in data by 

mapping it into a higher-dimensional space. Enables 

SVM to capture complex patterns and make accurate 

predictions. Support vectors are the data points closest 

to the hyperplane. They play a pivotal role in 

determining the position and orientation of the optimal 

hyperplane [27]. A Decision Tree Classifier is a versatile 

supervised learning algorithm used for both 

classification and regression tasks. It makes decisions by 

recursively splitting the dataset based on feature 

conditions until a stopping criterion is met, forming a 

tree-like structure of decisions. The algorithm selects the 

most informative feature to split the data at each node. 

The goal is to maximize information gain (for 

classification) or variance reduction (for regression). 

Nodes in the tree represent decisions based on feature 

conditions. Each decision node splits the data into 

subsets, guiding the traversal of the tree. Leaf nodes 

contain the final predicted output or class label. The 

algorithm assigns the majority class for classification 

tasks or the mean value for regression tasks. For 

classification, Decision Trees use entropy to measure 

impurity. Information gain is the reduction in entropy 

achieved by a split and guides the tree construction. 

Random Forest is an ensemble learning method based on 

Decision Trees [28]. It constructs a multitude of 

Decision Trees during training and outputs the mode of 

the classes (classification) or the mean prediction 

(regression) of the individual trees. Each tree is trained 

on a random subset of the data, and features are 

randomly selected for each split. For classification tasks, 

the mode (most frequent class) of the predictions from 

individual trees is taken as the final output. However, for 

regression, the mean prediction from all trees is used. 

Random Forest employs bagging, a technique where 

each tree is trained on a bootstrap sample (randomly 

sampled with replacement) from the original dataset.  

At each split, a random subset of features is considered, 

preventing individual trees from dominating the 

ensemble. RF Reduces overfitting and increases 

robustness. Because it is relevant to such a wide range of 

use cases, deep learning is generating a lot of interest. 

Choosing an algorithm is a key stage in the deep learning 

process, so ensure it genuinely matches the problem’s 

use case [29, 30]. Recurrent Neural Networks (RNNs) 

are among the best models applied to sequential data. 

They allow both forward propagation and backward 

propagation, which is well-suited for time series data. 

Long Short-Term Memory (LSTM) was introduced by 

Sepp Hochreiter and Jürgen Schmidhuber in 1997 [18]. 

The authors presented the LSTM architecture as  

a solution to address the vanishing gradient problem in 

traditional recurrent neural networks. The LSTM 

technique is designed to overcome the limitations of 

traditional RNNs in capturing long-term dependencies in 

sequential data (see Fig. 1). LSTMs introduce a memory 

cell that can store information over long periods, 

selectively retaining or discarding information as 

needed. This memory cell is controlled by specialized 

gating mechanisms, including the input gate, forget gate, 

and output gate. The gates regulate the flow of 

information into, out of, and within the memory cell, 

allowing LSTMs to effectively handle sequences with 

long time lags and complex patterns [31].  

 

 

Fig. 1. The LSTM architecture [32] 
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LSTM networks are specifically designed to capture 

long-term dependencies in sequential data, making them 

well-suited for modeling historical trends and patterns. 

They achieve this through the use of memory cells and 

gating mechanisms that selectively retain or forget 

information over time [33]. GRU networks, on the other 

hand, simplify the architecture by combining the forget 

and input gates, resulting in a more streamlined model 

and a concise architecture (see Fig. 2). This reduction in 

the number of gates can lead to faster training and 

inference times, making GRU more computationally 

efficient. Moreover, the GRU can adaptively update the 

memory cells and control the flow of information. GRU 

achieves this through its reset gate and update gate 

mechanisms, which allow for selective retention or 

modification of information from previous time steps. 

This adaptability enables GRU to handle sequences with 

varying lengths and evolving patterns effectively. 

Furthermore, GRU has been shown to perform 

comparably to LSTM in many sequence modeling tasks 

while requiring fewer parameters. This simplicity makes 

GRU a popular choice in scenarios where computational 

resources are limited or when the model needs to be 

deployed on devices with constrained memory or 

processing capabilities [34]. It is important to note that 

the choice between LSTM and GRU depends on the 

specific task and dataset at hand. While LSTM is often 

preferred for tasks that require modeling very long-term 

dependencies, GRU can be a more efficient option when 

dealing with less complex sequential data or when 

computational efficiency is a priority [35, 36]. 
 

 

 

Fig. 2. The GRU architecture [32] 

 

 

Both LSTM and GRU architectures effectively 

address the vanishing and exploding gradient problems 

that can hinder training in traditional RNNs. By 

regulating the flow of gradients, these architectures 

ensure stable learning and accurate predictions. 

Furthermore, the adaptive memory management of 

LSTM and GRU networks allows them to track dynamic 

changes in material quantity by updating their internal 

memory cells. This adaptability enables the models to 

capture evolving patterns and adjust their predictions 

accordingly. Moreover, LSTM and GRU networks 

demonstrate robustness to noisy or incomplete data, 

enabling them to learn from and generalize patterns even 

in challenging scenarios. This resilience makes them 

valuable in the context of real-world data from the 

cement workshop.  

 

 

Finally, the flexibility and ease of implementation of 

LSTM and GRU networks make them widely accessible 

in popular deep learning frameworks, facilitating their 

integration into existing systems. Their versatility allows 

for experimentation, fine-tuning, and optimization, 

ensuring the predictive model for material quantity is 

tailored to specific requirements. Ultimately, by 

leveraging the strengths of LSTM and GRU networks, 

the cement workshop can optimize production 

processes, streamline operations, and minimize 

disruptions, driving efficiency and productivity within 

the intelligent automation and Industry 5.0 framework. 

Each developed model is trained and evaluated 

separately for each target variable. The script uses  

a pipeline that includes the preprocessing steps and the 

model itself. The model is trained on the training data, 
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and then predictions are made on the test data. Any 

negative predictions (which may not make sense in the 

context of the problem, as the numbers cannot be 

negative) are replaced with 0. The performance of each 

model is evaluated using several metrics, including the 

Mean Squared Error (MSE), R-squared, and Mean 

Absolute Error (MAE). Each algorithm performed in 

this paper is selected based on its suitability for handling 

the unique characteristics of accident prediction data. 

The paper details the model development process, 

encompassing feature engineering, hyperparameter 

tuning, and model selection. 

 

5 Materials 

The study methodology, feature engineering 

approaches, model development, and extensive 

discussions on the implications of our findings are based 

on the rich dataset that allows the application of various 

machine-learning models to predict the amount of the 

materials. It provides a solid basis for examining the 

many factors that can contribute to the variation of 

material quantity. The models' performance can be 

evaluated and compared based on their accuracy in 

predicting the crash severity. In this study, the selected 

workshop for investigation is the cement mill workshop 

in the Ain Touta cement factory (SCIMAT) located in 

the East of Algeria. The cement mill workshop plays  

a crucial role in the cement production line. It involves  

a series of interconnected processes where the clinker 

materials undergo grinding, blending, and other 

necessary treatments to produce the desired product, 

which is the cement. The flowchart of the cement 

production plant of SCIMAT is illustrated in Fig. 3. 

 

 

Fig. 3. Flowchart of the cement production plant of SCIMAT factory (FLS/ECS view) 

 

To ensure smooth operation and continuous 

functionality, the raw mill workshop relies on a complex 

network of electrical, mechanical, and automated 

equipment. These include motors, conveyors, crushers, 

separators, and various control systems. Each 

component performs specific tasks to process and 

transform the raw materials into the required 

intermediate or final products. First, the pre-

homogenized raw materials are dried and milled in  

a two-chamber raw ball mill. The milling process 

transforms the raw materials into a powder, which is 

essential for promoting chemical reactions during the 

burning phase. The resulting powder is conveyed by an 

elevator to a separator. The separator is responsible for 

separating the finished product from larger particles. The 

larger particles that are separated by the separator are 

sent back to the raw mill for further milling. The finished 

product, which is the cement, is transferred to the raw 

mill silos. The raw mill silos store the finished product 

until it is ready for further processing to produce the 

clinker in the rotary kiln under a temperature of 1450 °C. 

The produced clinker will be transferred to a cement ball 

mill to be milled into cement. The cement processing 

procedure executed in the cement workshop is illustrated 

in Fig. 4. 

The workshop is supported by a range of auxiliary 

devices and systems. These include sensors, monitoring 

instruments, and maintenance equipment, which are 

employed to monitor operational parameters, detect 

anomalies, and conduct regular maintenance activities 

(Table 1). Their collective purpose is to ensure optimal 

performance, prevent downtime, and sustain the overall 

efficiency of the production process.  
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Fig. 4. Process of the cement ball mill workshop (FLS/ECS view)  

 

 

Fig. 5. The heatmap of all parameters 
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Table 1. Description of the cement mill workshop parameters 

Parameters  Interval  Units  Designation  

P1L01_L21  [0-100]  %  Silo Cement Level  

P1L02_L21  [0-100]  %  Silo Cement Level  

P1L03_L21  [0-100]  %  Silo Cement Level  

P2L01_L21  [0-100]  %  Silo Cement Level  

P2L02_L21  [0-100]  %  Silo Cement Level  

Z1L01_L21  [0-100]  %  Clinker Hopper Level  

Z1L02_L21  [0-100]  %  Clinker Hopper Level  

Z1L03_L21  [80-100]  %  Silo Cement Level  

Z1L04_L21  [0-100]  %  Silo Cement Level  

Z2A01_F1  [0-140]  t/h  Transp.Tape Flow  

Z2B01_F1  [0-140]  t/h  Transp.Tape Flow  

Z2C01_F1  [0-8]  t/h  Transp.Tape Flow  

Z2D01_F1  [0-40]  t/h  Transp.Tape Flow  

Z2J01_J1  [0-120]  %  Elevator Power  

Z2M01_P1  [0-4]  mbar  Crusher Pressure Input   

Z2M01_P2  [0-40]  mbar  Crusher Pressure Output  

Z2M01_T2  [0-150]  °C  Crusher Temperature Input  

Z2M01_T3  [0-150]  °C  Crusher Temperature Output 

Z2M01_X1  [0-100]  %  Crusher acoustic equipment  

Z2M01_Y1_SPM  [0-140]  t/h  Total Feed  

Z2M01I01_TOTAL  [0-150]  t/h  Total Feed Rate  

Z2M03_J1  [0-120]  %  Engine Crusher Power   

Z2M03_T8  [0-150]  °C  Crusher Bearing Temperature  

Z2M03_T9  [0-150]  °C  Crusher Bearing Temperature  

Z2P06_Z01  [0-100]  %  Butterfly Register Position  

Z2P25_Z1  [0-100]  %  Butterfly Register Position  

Z2S01_I1  [0-120]  %  Separator Current  

Z2S01_S1  [0-100]  %  Separator Speed  

Z2S03_J1  [0-120]  %  Fan Power  

Z2S05_Z01  [0-100]  %  Butterfly Register Position  

 

 

 

As a result, it was decided to include all the 

characteristics to capture their contributions and conduct 

a thorough analysis. By including all the characteristics, 

the analysis can take into account their potential 

combined effects on the production line. Typically, in 

cases where there is a high correlation between two or 

 more characteristics, we may choose to eliminate some 

of them to avoid redundancy. However, in this particular 

dataset, since the correlations are generally low, it is 

necessary to include all the characteristics to capture 

their contributions and ensure a comprehensive analysis.  
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6 Results and discussion 

In our experiments, the data set is split into two parts, 

respectively the train set (60%), test set (30%), and 

validation set (10%). The training set is used to train the 

prediction model while the testing set is used to validate 

the performance of the trained model. More specifically, 

the accuracy of predictions on the testing set, the core, 

and key of further applications, plays an essential part in 

the validation and directly affects whether it could be 

used. During the first stage, the algorithms were applied 

to a training dataset and the performance was evaluated. 

Later, the algorithms were applied to a testing dataset to 

make predictions. The results of the evaluation process 

using the Machine Learning algorithm depicted in Fig. 6 

(a-d), provide valuable insights into the predictive 

capabilities of the machine learning models and their 

ability to accurately forecast the state of the production 

line. 

 

 

   (a) Gradient boosting predictions         (b) Multi-layer perceptron predictions 

 

   (c) Random forest predictions          (d) Support vector regressor predictions 

Fig. 6. Obtained results of first material forecasting of machine learning models 

 

In the initial stage, the LSTM and the GRU 

algorithms are applied to the training dataset, and their 

performance is evaluated. Subsequently, the trained 

model is used to make predictions on the testing dataset, 

and the accuracy of these predictions is assessed. The 

results of the evaluation process using time series 

algorithms represented in Fig. 7 (a-d), provide a more 

valuable insights into the predictive capabilities of these 

models and their ability to truthfully predict the state of 

the feeders of the production line. 
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(a) Long short-term memory predictions           (b) Gated recurrent unit predictions 

 

(c) Actual vs predicted using LSTM           (d) Actual vs predicted using GRU 

Fig. 7. Actual vs predicted first material forecasting using LSTM and GRU 

 

The evaluating metrics of the predictions on the 

testing set is a crucial metric for evaluating the model's 

performance. It serves as a core aspect of further 

applications and directly influences the model's 

usability.  

For time series prediction using LSTM or GRU, 

common loss functions include Mean Squared Error 

(MSE) and Mean Absolute Error (MAE). These loss 

functions are suitable for regression tasks when 

predicting a continuous value. The MSE measures the 

average squared difference between the predicted values 

(outputs) and the true values (labels). Mathematically, it 

is calculated as the mean of the squared differences 

between each corresponding pair of predicted and true 

values. However, the MAE measures the average 

absolute difference between the predicted values 

(outputs) and the true values (labels). It is calculated as 

the mean of the absolute differences between each 

corresponding pair of predicted and true values, see Fig. 

8 (a, b). 

 

 

        (a) LSTM training loss function              (b) LSTM validation loss function 

Fig. 8. The LSTM model training and validation loss functions 



246                       Hanane Zermane et al.: Forecasting material quantity using machine learning and times series techniques 

 

 

       (a) GRU training loss function              (b) GRU validation loss function 

Fig. 9. The GRU model training and validation loss functions  

 

The results of the GRU model training and validation 

loss functions process are depicted in Fig. 9 (a, b), pro-

viding insights into the predictive capabilities of the 

model.  

These metrics provide insights into the effectiveness 

of the models in accurately predicting the workshop-fed 

materials and their overall performance in the context of 

the specific application. By analyzing these metrics, it 

becomes possible to compare the performance of 

different models and identify the most suitable approach 

for predicting the workshop-fed materials in the given 

industrial setting. To assess the performance of various 

machine learning models on unseen data, industry-

standard metrics such as loss function, r-squared Error, 

and Mean Absolute Error are utilized. The Mean Square 

Error of the predictions on the testing set serves as  

a crucial metric for evaluating the model's performance. 

It indicates how well the trained model generalizes to 

unseen data and directly influences its usability for 

practical applications. The goal is to achieve a high level 

of prediction on the testing set, demonstrating the 

model's ability to effectively predict the state of the 

production line.  

Results demonstrate the overall system performance 

enhancement in predicting bearing failure when 

modeled data are included with SCADA data. Based on 

data from the cement plant, the performances of different 

machine-learning and deep-learning models (LSTM and 

GRU) on unseen data are then evaluated using industry-

standard metrics. The evaluation results of these metrics 

for different machine learning models, based on the data 

obtained from the cement plant, are summarized, and 

presented in Table 2.  

 

 

 

Table 2. The evaluation metrics  

of the predictive models 

Metrics   R-squared RMSE MAE 

SVR 0.9739 0.0530 0.0403 

Random 

forest 
0.9990 0.0096 0.0026 

MLP 0.9890 0.0338 0.0255 

Gradient 

boosting 
0.9989 0.0106 0.0042 

LSTM 0.9978 0.0149 0.0100 

GRU 0.9980 0.0135 0.0099 

 

The results and discussion presented in this paper 

underscore the complexity of industrial supervision 

systems prediction, a problem that requires an 

integrated, multi-method approach and algorithms. 

Thus, our work underlines the potential of machine 

learning algorithms and time series techniques for the 

prediction of the first materials. The findings inform the 

selection of appropriate algorithms and feature sets, with 

the ultimate goal of enhancing production and 

preventing downtimes. 
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7 Conclusion 

The presented learning models and architectures 

showcase significant advancements that bring notable 

improvements in control flexibility, data handling 

capabilities, and the ability to process large amounts of 

information in complex industrial processes. These 

advancements have several advantages and implications 

for industrial operations. The increased control 

flexibility allows for better adaptability and respon-

siveness in managing complex systems. The learning 

model can dynamically adjust its parameters and 

decision-making based on real-time data, enabling more 

precise and efficient control of industrial processes. This 

flexibility enhances the ability to handle unexpected 

situations, adapt to changing conditions, and optimize 

performance in real time. 

The improved data handling capabilities of the 

learning model enable the processing and analysis of 

large volumes of information. In complex industrial 

processes, there is a wealth of data generated from 

various sensors, machines, and control systems. The 

learning model can effectively extract meaningful 

insights from this data, facilitating informed decision-

making, predictive maintenance, and fault detection. 

Machine Learning regressors achieved improved results, 

SVR (R-squared 0.9739, MAE 0.0403), Random Forest 

(R-squared 0.9990, MAE 0.0026), MLP (R-squared 

0.9890, MAE 0.0255), Gradient Boosting (R-squared 

0.9989, MAE 0.0042). However, noticeable results were 

obtained by the time series models LSTM and GRU. 

They yielded R-squared 0.9978, MAE 0.0100,  

R-squared 0.9980, MAE 0.0099, respectively. These 

achievements underscore the potential impact of 

leveraging advanced machine learning techniques for 

enhancing the operational dynamics and overall 

efficiency of manufacturing facilities.  

The ability to handle large-scale data empowers 

industrial systems to leverage the benefits of big data 

analytics and effectively utilize information for 

optimizing operations. Furthermore, the advancements 

in the presented architecture contribute to enhanced 

productivity and reduced maintenance costs. By accu-

rately predicting faults and alarms, the learning model 

enables proactive maintenance and minimizes 

unplanned downtime. This proactive approach helps 

prevent costly equipment failures and enables efficient 

scheduling of maintenance activities, ultimately impro-

ving overall productivity and reducing maintenance 

expenses. However, despite these advancements, there 

are still areas for further improvement and exploration.  

The ultimate outcomes include improved and 

efficient production, optimization of production pro-

cesses, streamlined operations, reduced downtime, 

mitigation of potential disruptions, and the facilitation of 

the factory’s evolution towards intelligent manu-

facturing processes embedded within the framework of 

Industry 5.0. Consequently, Future research should 

focus on testing the presented dataset with a wider range 

of advanced deep-learning algorithms to identify the 

most suitable approach for specific industrial processes. 

Exploring alternative algorithms can potentially lead to 

even better efficiency, accuracy, and adaptability in 

predicting and managing faults and alarms. Moreover, it 

is crucial to address the challenges associated with 

developing prognostic and health management systems 

for complex industrial processes with numerous real-

time alarms and faults. Research efforts should be 

directed toward developing more sophisticated 

algorithms and methodologies that can effectively 

handle the complexities and dynamics of such systems. 

The aim is to create autonomous systems that can 

supervise factories in real time, make timely decisions 

based on alarms and faults, and take appropriate actions 

to ensure optimal operation and performance. By pur-

suing these research directions, the field of prognostic 

and health management systems can advance further, 

leading to the development of intelligent and auto-

nomous industrial processes that are capable of 

efficiently managing complex operations, minimizing 

disruptions, and maximizing productivity. 

 

References 

[1] Y. Li, S. Carabelli, E. Fadda, D. Manerba, R. Tadei, and  

O. Terzo, “Machine learning and optimization for production 

rescheduling in Industry 4.0,” Int. J. Adv. Manuf. Technol., vol. 

110, no. 9–10, pp. 2445–2463, 2020. 

[2] L. Wang, Z. Liu, A. Liu, and F. Tao, “Artificial intelligence in 

product lifecycle management,” Int. J. Adv. Manuf. Technol., 

vol. 114, no. 3–4, pp. 771–796, 2021. 

[3] A. Sharma, Z. Zhang, and R. Rai, “The interpretive model of 

manufacturing: a theoretical framework and research agenda 

for machine learning in manufacturing,” Int. J. Prod. Res., vol. 

59, no. 16, pp. 4960–4994, 2021. 

[4] A. Kusiak, “Smart manufacturing,” Int. J. Prod. Res., vol. 56, 

no. 1–2, pp. 508–517, 2018. 

[5] I. Van Heerden and A. Bas, “Viewpoint: Ai as author - bridging 

the gap between machine learning and literary theory,” J. Artif. 

Intell. Res., vol. 71, pp. 175–189, 2021. 

[6] V. A. Spyros Makridakis, Evangelos Spiliotis, “Statistical and 

Machine Learning forecasting methods: Concerns and ways 

forward Spyros,” PLoS One, vol. 13, no. 3, pp. 1–26, 2018. 

[7] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, 

pp. 5–32, 2001. 

[8] A. Zermane, M. Z. Mohd Tohir, H. Zermane, M. R. Baharudin, 

and H. Mohamed Yusoff, “Predicting fatal fall from heights 

accidents using random forest classification machine learning 

model,” Saf. Sci., vol. 159, no. November 2022, p. 106023, 

2023. 

[9] T. Han, B. K. Aylas-Paredes, J. Huang, A. Goel, N. Neithalath, 

and A. Kumar, “On the Prediction of the Mechanical Properties 

of Limestone Calcined Clay Cement: A Random Forest 

Approach Tailored to Cement Chemistry,” Minerals, vol. 13, 

no. 10, pp. 1–19, 2023. 

[10] H. Ma, J. Liu, J. Zhang, and J. Huang, “Estimating the 

Compressive Strength of Cement-Based Materials with Mining 

Waste Using Support Vector Machine, Decision Tree, and 

Random Forest Models,” Adv. Civ. Eng., vol. 2021, 2021. 



248                       Hanane Zermane et al.: Forecasting material quantity using machine learning and times series techniques 

 

[11] B. Lim and S. Zohren, “Time-series forecasting with deep 

learning: A survey,” Philos. Trans. R. Soc. A Math. Phys. Eng. 

Sci., vol. 379, no. 2194, 2021. 

[12] H. Bousnguar, A. Battou, and L. Najdi, “Gated Recurrent units 

(GRU) for Time Series Forecasting in Higher Education,” Int. 

J. Eng. Res. Technol., vol. 12, no. 03, pp. 152–154, 2023. 

[13] R. Dey and F. M. Salemt, “Gate-variants of Gated Recurrent 

Unit (GRU) neural networks,” in Midwest Symposium on 

Circuits and Systems, 2017, pp. 1597–1600. 

[14] Y. Wu et al., “Google’s Neural Machine Translation System: 

Bridging the Gap between Human and Machine Translation,” 

arXiv, pp. 1–23, 2016. 

[15] H. Sak, A. Senior, and F. Beaufays, “Long Short-Term 

Memory Based Recurrent Neural Network Architectures for 

Large Vocabulary Speech Recognition,” arXiv, 2014. 

[16] K. Cho et al., “Learning phrase representations using RNN 

encoder-decoder for statistical machine translation,” in 

EMNLP 2014 - 2014 Conference on Empirical Methods in 

Natural Language Processing, Proceedings of the Conference, 

2014, pp. 1724–1734. 

[17] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical 

Evaluation of Gated Recurrent Neural Networks on Sequence 

Modeling,” pp. 1–9, 2014. 

[18] S. Hochreiter and J. Schmidhuber, “Long Short-Term 

Memory,” Neural Comput., vol. 9, pp. 1735–1780, 1997. 

[19] R. W. S. Makridakis, A. Andersen, R. Carbone, R. Fildes, M. 

Hibon, R. Lewandowski, J. Newton, E. Parzen, “The 

Forecasting Accuracy of Major Time Series Methods,” J. Am. 

Stat. Assoc., vol. 81, no. 393, pp. 262–263, 1986. 

[20] S. Minami, “Predicting Equity Price with Corporate Action 

Events Using LSTM-RNN,” J. Math. Financ., vol. 08, no. 01, 

pp. 58–63, 2018. 

[21] Y. Xie, “Student Performance Prediction via Attention-Based 

Multi-Layer Long-Short Term Memory,” J. Comput. 

Commun., vol. 09, no. 08, pp. 61–79, 2021. 

[22] G. M. S. Hossain, M. H. O. Rashid, M. R. Islam, A. Sarker, and 

M. A. Yasmin, “Towards Mining Public Opinion: An 

Attention-Based Long Short Term Memory Network Using 

Transfer Learning,” J. Comput. Commun., vol. 10, no. 06, pp. 

112–131, 2022. 

[23] I. Obisakin and C. V. Ekeanyanwu, “State of Health Estimation 

of Lithium-Ion Batteries Using Support Vector Regression and 

Long Short-Term Memory,” Open J. Appl. Sci., vol. 12, no. 08, 

pp. 1366–1382, 2022. 

[24] Z. Yu, Y. Sun, J. Zhang, Y. Zhang, and Z. Liu, “Gated recurrent 

unit neural network (GRU) based on quantile regression (QR) 

predicts reservoir parameters through well logging data,” 

Front. Earth Sci., vol. 11, no. January, pp. 1–8, 2023.

 

[25] M. Abumohsen, A. Y. Owda, and M. Owda, “Electrical Load 

Forecasting Using LSTM, GRU, and RNN Algorithms,” 

Energies, vol. 16, no. 5, pp. 1–31, 2023. 

[26] S. H. Ahmadi and M. J. Khosrowjerdi, “Fault detection 

Automation in Distributed Control Systems using Data-driven 

methods : SVM and KNN,” TechRxiv. Prepr., pp. 0–7, 2021. 

[27] C. Corinna and V. Vapnik, “Support-Vector Networks,” Mach. 

Leaming, vol. 20, pp. 273–297, 1995. 

[28] H. Zermane and A. Drardja, “Development of an efficient 

cement production monitoring system based on the improved 

random forest algorithm,” Int. J. Adv. Manuf. Technol., vol. 

120, no. 3–4, pp. 1853–1866, 2022. 

[29] J. P. Usuga Cadavid, S. Lamouri, B. Grabot, R. Pellerin, and 

A. Fortin, “Machine learning applied in production planning 

and control: a state-of-the-art in the era of industry 4.0,” J. 

Intell. Manuf., vol. 31, no. 6, pp. 1531–1558, 2020. 

[30] T. Mohana-Priya, M. Punithavall, and R. Rajesh-Kanna, 

“Conceptual Review on Machine Learning Algorithms for 

Classification Techniques,” Int. J. Sci. Res. Comput. Sci. Eng. 

Inf. Technol., vol. 7, no. 1, pp. 215–222, 2021. 

[31] K. Greff, R. K. Srivastava, J. Koutnik, B. R. Steunebrink, and 

J. Schmidhuber, “LSTM: A Search Space Odyssey,” IEEE 

Trans. Neural Networks Learn. Syst., vol. 28, no. 10, pp. 2222–

2232, 2017. 

[32] K. Zarzycki and M. Ławryńczuk, “LSTM and GRU neural 

networks as models of dynamical processes used in predictive 

control: A comparison of models developed for two chemical 

reactors,” Sensors, vol. 21, no. 16, 2021. 

[33] G. Van Houdt, C. Mosquera, and G. Nápoles, “A review on the 

long short-term memory model,” Artif. Intell. Rev., vol. 53,  

no. 8, pp. 5929–5955, 2020. 

[34] N. Zafar, I. U. Haq, J. U. R. Chughtai, and O. Shafiq, 

“Applying Hybrid Lstm-Gru Model Based on Heterogeneous 

Data Sources for Traffic Speed Prediction in Urban Areas,” 

Sensors, vol. 22, no. 9, pp. 1–20, 2022. 

[35] T. B. Shahi, A. Shrestha, A. Neupane, and W. Guo, “Stock 

price forecasting with deep learning: A comparative study,” 

Mathematics, vol. 8, no. 9, pp. 1–15, 2020. 

[36] R. Fu, Z. Zhang, and L. Li, “Using LSTM and GRU neural 

network methods for traffic flow prediction,” in Proceedings - 

2016 31st Youth Academic Annual Conference of Chinese 

Association of Automation, YAC 2016, 2017, no. November 

2016, pp. 324–328. 

 

 

Received 12 April 2024 

______________________________ 
 


