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COMMUNICATIONS

A HYBRID ALGORITHM TO SOLVE LARGE
SCALE ELECTROMAGNETIC PROBLEMS

Abdelmadjid Nouicer — Mohamed Elhadi Latreche
∗

In this paper, the use of feed forward neural networks (FNN) coupled with the wavelet transform to solve electromagnetic
problems is investigated. The direct use of the FNN to solve large scale electromagnetic problems needs a lot of CPU time
and computer memory because we deal with a large size of training data base. So, the wavelet transform is proposed in
order to reduce the data base size, in other terms using wavelets coefficients as training data instead of the original signal.
A simple example shows the feasibility of our approach.
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1 INTRODUCTION

The use of conventional methods to solve the electro-
magnetic problems needs a lot of CPU time and com-
puter memory. Moreover, when dependences on different
parameters are present, eg, influence of the mobile part
positions, of temperature, etc [1], the computational bur-
den is increased. To overcome this drawback, the FNN,
which can provide an effective means for the solution of
electromagnetic problems such as inverse problems or op-
timization problems, has aroused the researcher’s atten-
tion [2, 3]. Using available training sets, FNN can estab-
lish an approximation model by fitting the relation ship
between the given input/output data without requiring
any fundamental physical theories [1]. However, the neu-
ral networks cannot be used efficiently in some problems
because we deal with a large scale training data base,
such as in detecting cracks in a magnetic material where
we generally use the flux leakage signal as the testing
signal (defaults signature). The proposed paper presents
two coupled algorithms between FNN and wavelets. The
use of the wavelet transform has its goal in reducing the
size of the training data base in order to make the use of
FNN efficient (using the wavelets coefficients instead of
the original signal). In the second algorithm, we propose

an amelioration of the reconstructed solution yielded by
FNN.

2 WAVELET TRANSFORM

For many signals, the low-frequency content is the
most important part. This is what gives the signal its
identity. The high-frequency content, on the other hand,
imparts flavour or nuance. It is for this reason that,
in wavelet analysis, we often speak of approximations
and details. The approximations are the high-scale, low-
frequency components of the signal. The details are the
low-scale, high-frequency components [8]. Therefore, de-
composition consists of discrete convolutions followed by
operations of decimation (down-sampling).


Figure 1 shows the decomposition process. Here S is
the original signal, A and D are the approximation and
detail parts, respectively. H and G are the low-pass and
the high-pass filters, respectively. ↓2 represents the down-
sampling (we take a sample on two).

This process, which includes down-sampling, produces
the discrete wavelet coefficients.

The decomposition process can be iterated, with
successive approximations being decomposed in turn,

Fig. 1. One stage decomposition Fig. 2. Multiple-level decomposition Fig. 3. Reconstruction procedure
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Fig. 4. The first - (a), and the second - (b) learning scheme

Fig. 5. The first - (a), and the second - (b) reconstruction schemes

so that one signal is broken down into many lower-
resolution components. This is called the wavelet de-
composition tree [8].Since the analysis process is it-
erative, in theory it can be continued indefinitely. In
reality, the decomposition can proceed only until the
individual details consist of a single sample or pixel.




The other half of the story is how those components
can be assembled back into the original signal. This pro-
cess is called reconstruction or synthesis . The mathemat-
ical manipulation that affects synthesis is called the in-
verse discrete wavelet transform (IDWT). Where wavelet
analysis involves filtering and down-sampling, the wavelet
reconstruction process consists of up-sampling and filter-
ing. Up-sampling is the process of lengthening a signal
component by inserting zeros between samples [8]. In
Fig. 3 ↑2 represents the up-sampling.

2 COUPLED ALGORITHMS

The key idea is that before the procedure of learning,
the training vectors (target vectors) are transformed into
a space of wavelet spectrum. The space of the wavelet

spectrum is composed of two representative spectra; one
group has a larger absolute value (approximation), the
other has nearly a zero value (detail) [5]. To apply this
methodology we present two different schemes; in the first
one, the FNN is learned using only the approximation
part of the transformed target vector (Fig. 4a). So, this
configuration presents much loss of information because,
in the procedure of the reconstruction, the detail part
vector is considered to be equal to zero. To minimize
this loss, we propose a second learning scheme. In this
second configuration, the detail part is not completely
neglected but it is reduced in turn to its approximation
and detail parts, the FNN learning is carried out using
the approximation part of the transformed target vector
and the approximation part of its transformed detail part
(Fig. 4b). To reconstruct the original signal, we must first
reconstruct the detail vector. Figures 5a and 5b present
the reconstruction algorithms.

The proposed algorithms can be used efficiently in the
electromagnetic diagnostic domain. That is, the testing
signal is regular, when no crack is present (no abrupt
variation). However, this signal present a high variation
in the defaults regions. It is well known that the basic
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Fig. 6. (a) - The electromagnetic solution domain, (b) - Distribution of the magnetic vector potential A

characteristic of the wavelets transform is that its coef-
ficients are very small in the zones where the signal is
regular and large in the abrupt variation zones. Thus the
wavelets coefficients reflect the signature defaults and this
can be used as a testing signal. Then, the size of the train-
ing vectors is reduced.

3 VALIDATION AND RESULTS

To show the efficiency of the proposed algorithms,
an FNN coupled with a wavelet software emulation sys-
tem has been implemented in MATLAB to compute the
trasnsformed solution of the magnetostatic equation of
the axisymmetric actuator given in Fig. 6. In such a con-
figuration, the magnetic vector potential A has only one
component Aϕ , and the magnetostatic equation takes the
following form in the (r, z) plane [6, 7]:

∂

∂r

(1

r
v
∂(rAϕ)

∂r

)

+
∂

∂z

(1

r
v
∂(rAϕ)

∂z

)

= −J . (1)

v is the magnetic reluctivity and J is the current density.

Figure 6a presents the object of our application, an
axisymmetric actuator used to produce striking forces.
It is composed of a coil and a cylindrical unsaturated
steel armature moving following -z - axis when a voltage
is applied to the coil. The characteristics of the exper-
imental system which exist in IREENAI laboratory are
[6]: M = 5.52 kg (mass of moving part), v = 4.35× 10−3

(the relative reluctivity of the armature), R = 3.21 Ω (the
coil resistance).

In order to generate the training vectors for the neural
network, 80 variations in the position of the moving ar-
mature had been done, performing 80 FEM simulations.
Finite element meshes with 573 elements and 320 nodes
were used in the simulations. After FEM simulations,
the obtained vectors are compressed using the discrete
wavelet transform.

We used a three layer FNN, the first layer is consti-
tuted by one unit with a sigmoid activation function, the
second layer is constituted by fifteen units with a sigmoid

Fig. 7. Solutions of (1) obtained by: (a) - FEM, predicted, reconstructed using: (b) - the first learning scheme, (c) - the second learning
scheme
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Fig. 8. Force density as a function of radius for a decomposition
level 2 and Daubechies-4- as wavelet basis function

activation function and the third layer is constituted by
N units with a linear activation function. N is the length
of the compressed training vectors. The input of FNN
model is the position of the mobile part, whereas the FNN
returns the predicted transformed solution of (1) (vector
potential A). The training algorithm used in simulation
is the Levenberg-Marquard algorithm. The training pro-
cedure is stopped when the error is inferior to 10−6 .

Figures 7 show the solution of (1) obtained by the
FEM and that predicted by the FNN (after the recon-
struction procedure).The training vectors are compressed
at the decomposition level 2 using Haar wavelet as a basis
function. For the second algorithm, the detail part is com-
pressed at the decomposition level 3 and Daubechies-4-
wavelet as a basis function.

Table 1 summarizes some results. The size of the train-
ing vectors obtained by FEM is 320.

Table 1.

Wavelet Decom- Size of Average
basis position compressed Error

functions level training (%)

data vector

First 2 160 9.742

Haar scheme 3 80 17.989

Second 2 240 8.759
scheme 3 120 13.589

We notice that the average relative error is calculated
with regard to the solution obtained by FEM, this error
is negligible at the decomposition level 1 while using the
second scheme and lower than 5 % when we use the first
scheme.

After calculating the solution of the magnetostatic
equation, we have exploited this result to calculate the
force exerted on the moving armature. Figure 8 shows the
force density acting on the superior surface of the mov-
ing armature calculated by the use of Maxwell’s stress
tensor at Z = 60 mm. For the second algorithm, details

were compressed at the decomposition level 4 using Haar
wavelet.

4 CONCLUSION

The use of neural networks in solving the electromag-
netic problems is an efficient tool. However, neural net-
works cannot be used efficiently in some problems because
we deal with large scale training vectors. The main idea
behind this work is to present a new approach allowing to
make an efficient use of neural networks by reducing the
size of the training vectors using the wavelets transform.

The proposed algorithms offer an efficient tool for the
electromagnetic diagnostic where the wavelet coefficients
are used instead of the real signal as defaults signature,
this problem will be the object of a future work.
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