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Robust decentralized switched controller
design for linear continuous-time systems

Vojtech Veselý1

The paper is devoted to obtain original equivalent subsystem method to design of decentralized controller for linear large
scale systems. On the theoretical example a new robust decentralized PID switched controller design procedure is obtained for
linear time-varying (gain scheduled plant model) uncertain complex system with decentralized output and input structure.
Controller design procedure to decentralized controller design performs on the subsystem level. The designed decentralized
switched controller ensures the robust stability of closed-loop complex polytopic system with performance H2 quadratic
cost function (QSR). The proposed practical examples with ideal or non-ideal switch of switching parameters show the
effectiveness of equivalent subsystem approach.

K e y w o r d s: large scale system, equivalent subsystem method, switched system, continuous time system, robust
stability, output decentralized feedback, quadratic/multi quadratic stability.

1 Introduction

Decentralized controller design procedure has been
obtained in frequency and in time domain. In the fre-
quency domain the following approaches are presented:
independent design approach [3], sequential design [4],
and method of equivalent subsystems approach [5]. De-
centralized controller design in time domain started with
vector Lyapunov function [2]. Large progress has been
made using LMI-BMI approach to design the decentral-
ized controller, see survey paper [6]. Unfortunately, when
one in the decentralized controller design procedure the
the linear (bilinear) matrix inequalities should used the
full complex uncertain plant model is need. This paper
is devoted to obtain the new unified robust decentral-
ized gain scheduled (switched) controller design proce-
dure which provided on the subsystem level such that
design procedure ensure resulting complex plant stability
and H2 performance for all polytopic uncertain complex
system.

Switched control systems have played an important
role in the past decades. Motivation for design such sys-
tems comes:

– switched systems have numerous practical applications,
– in real world, there are systems that cannot be sta-
bilized by continuous or discrete-time controllers, but a
stabilizing switching control can be found.

For stability switched systems the quadratic stability
play important role, gives the stability under an arbi-
trary switching law. Multiple Lyapunov function gives
however less conservative results. For stability of non-
linear switched system see [1]. In the references there are

huge number for switched controller design to discrete-
time systems but for continuous-time the number of ref-
erences is rather small [7–12]. For switched controller de-
sign in the continuous time system [10, 13] the notion of
Dwell-Time (minimal time interval between switching)
have been introduced. In switched controller design the

dwell-time Td is in the term of eAc Td where Ac is the
closed-loop system. Term mention above complicates the
switched controller design procedure for continuous time
systems.

In this paper, the original method of equivalent sub-
system approach is developed to design of decentralized
robust controller. Design procedure ensures the robust
quadratic/multi quadratic stability conditions to closed-
loop switched complex system with arbitrary (or event
driven) switching. In the proposed design procedure there
is no need to use the approach of dwell-time. The rate
of switching variable changes could be described by the
designer, ideal switching with infinite rate or non-ideal
switching with constant rate, which opens new possibil-
ity for practical realizations. In this paper the authors
idea [3] were followed and it was spread to robust decen-
tralized control using equivalent subsystem approach.

After formulation of the problem and obtaining the
preliminary results to design the equivalent subsystem
model, we give the main results to obtain the equivalent
subsystems approach and sufficient robust stability con-
ditions for quadratic/multi quadratic stability approach
to design the switched controller. The results, in the form
of BMI are demonstrated on three examples for ideal and
non-ideal switching.

Hereafter, the following notational conditions will be
adopted. Given a symmetric matrix P = P⊤ ∈ Rn×n ,
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the inequality P > 0, (P < 0) denotes matrix positive
(negative) definiteness. In, 0n denotes the identity (zero)
matrix of corresponding dimensions.

2 Preliminaries and problem formulation

Let the uncertain LTV complex system is governed by

∑

σ : ẋ(t) = A(θ, ξ)x(t) +B(θ, ξ)u(t) ,

y(t) = Cx(t) ,

x(0) = x0

(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the

control vector, y(t) ∈ Rl is the output vector of the sys-
tem to be controlled, σ ∈ S = {1, 2, . . . , p} is an arbi-
trarily switching algorithm. The arbitrary switching algo-
rithm σ is a piecewise constant, right continuous function
which specifies at each time the index of the active closed-
loop system [15, 21], p is the number of switched modes
of linear systems and

A(θ, ξ) = A0(ξ) +

p
∑

i=1

Ai(ξ)θi ,

B(θ, ξ) = B0(ξ) +

p
∑

i=1

Bi(ξ)θi

(2)

where ξ ∈ RN are constant or time varying uncertain
parameters such that

ξ ∈ Ωξ :=
{

ξi ≥ 0,

N
∑

i=1

ξi = 1,

N
∑

i=1

ξ̇i = 0, i = 1, 2, ..., N
}

,

θ ∈ Ωθ :=
{

θj ∈ 〈0, 1〉,

p
∑

j=1

θj = 1,

p
∑

j=1

θ̇j = 0, θ̇ ∈ Ωt

}

(3)
are switching parameters. Note that for switching systems
the stable steady state points of switching parameters
θi , i = 1, 2, . . . , p are equal to 0 or 1. If the switching
parameter θi , i = 1, 2, . . . , p differs from 0 or 1, it is
moving to one of the stable points with the rate of θi
change θ̇i , i = 1, 2, . . . , p .

In this paper two possibilities were considered for
switching parameters θj , j = 1, 2, . . . , p :

• the rates of variation are infinite -ideal switching. In
this case for the k -th mode hold θk = 1 and θj = 0,
for j = 1, 2, . . . p , j 6= i ,

• the rates of switching parameters variations are finite,
non-ideal switching, lets’ assume that the system (1)
switched from k -th to l -th mode k, l = 1, 2, . . . , p ,

k 6= l , holds θk + θl = 1, θ̇k + θ̇l = 0, θ̇j , θj = 0,
j = 1, 2, . . . , p , j 6= k, l .

Note, that uncertain system (1) consists of two type
of vertices. The first set of vertices are due to the system
uncertainties, N -vertices and the second one is due to
the switching variables θ with T = p vertices.

If I-part of switched controller is need to design for
output feedback, then the plant system states (1) need
to be augmented with states equal to integral of output
variables. For more detail see [2]. Furthermore assume the
system (1) allows to design “I” part of switched controller
with static output feedback, that is for augmented plant
state holds x⊤ = [x⊤

r e⊤] where ė = Cx , state vector
xr form the output PD feedback and e ensure integral of
output feedback. In the following we assume that matrices
in (1) have output and input decentralized structure as
follows.

Aji =





A11ji . . . A1mji

. . . . . . . . .
Am1ji . . . Ammji



 ∈ Rn×n,

Bji = blockdiag[B1ji . . . Bmji] ∈ Rn×m,

C = blockdiag [C1 . . . Cm] ∈ Rl×n,

j = 1, 2, ...p; i = 1, 2, ..., N .

(4)

The division of above matrices into sub-matrices follows
from inherent properties of uncertain plant (1).

The problem studied in this paper is to develop the
original design procedure based on the equivalent subsys-
tem approach and using its to design of the robust de-
centralized switched controller. Design procedure is per-
formed on each subsystem level. The design procedure
should guarantee the closed-loop complex system robust
stability and optimal value of quadratic cost function.

Jh =

∫ ∞

to

(x⊤
h Qhxh+ ẋ⊤

h Sxh+u⊤
hRhuh)dt, h = 1, 2, . . . ,m

(5)
where matrices Qh, Sh, Rh are positive definite (semidef-
inite) and positive definite matrices for h = 1, 2, . . . ,m .

The control algorithm is in the form of PID structure
for all subsystems

uh = kph(θ)Chxrh + kIh(θ)eh + kdh(θ)Chẋrh =

[kph(θ)Ch kIh(θ)] xh + [kdhCh 0] ẋh , x
⊤
h =

[

x⊤
rh e⊤h

]

(6)

where

kx(θ) = kxo +

p
∑

j=1

kxjθj , ėh = yh .

xh the h-th subsystem state variable including aug-
mented integral output feedback.

The following Lemmas will be useful for the next de-
velopment.

Definition 1 [22, 23]. The switched linear closed-loop
subsystem is said to be quadratically stabilizable via out-
put feedback if there exists a Lyapunov function of the

form Vh = x⊤
h Phxh, Ph > 0, a positive number ǫ > 0

and a switched rule σ such that

dVh

dt
< −ǫx⊤

h xh (7)
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Definition 2 [22, 23]. The switched linear closed-loop
subsystem is said to be multiple quadratically stabilizable
via output feedback if there exists a Lyapunov function
of the form Vh(θ) = x⊤

h Ph(θ)xh, Ph(θ) > 0, a positive
number ǫ > 0 and a switched rule σ such that

dVh(θ)

dt
< −ǫx⊤

h xh (8)

Lemma 1 [4] (Bellman Lyapunov equation).
Consider the uncertain dynamical system (1) with decen-
tralized control structure (4) and control algorithm (6).
Decentralized control algorithm (6) belongs to the class of
guaranteed cost control law for closed-loop subsystem if
and only if there exists decentralized Lyapunov function
Vh(x, θ, ξ) , h = 1, 2, . . . ,m and ε ≥ 0 such that holds

Beh = maxu

{dVh(·)

dt
+ Jh(xh, uh, ẋh)

}

= −εx⊤
h xh ,

h = 1, 2, . . . ,m . (9)

Note, that for a particular structure of the Lyapunov
function Vh(x, θ, ξ) “if and only if” may be reduced to
“if”.

Lemma 2. If D ∈ Rn×n matrix with {λ1, . . . , λn} eigen-
values, then eigenvalues of matrix D + αI , α ≥ 0 are
{λ1 +α, . . . , λn +α} . Eigenvalues of matrix (I + cD) are
{1 + cλ1, . . . , 1 + cλn} .

Lemma 3 [5]. Let λ be an eigenvalue of sum of two
symmetric matrices G + D , then λ ∈ (F (G) + F (D)) ,
where F (·) is the field of values of the corresponding
matrix.

Lemma 4. The sum of two matrices G + D is stable if
and only if there positive definite matrix P > 0 exists
such that the following inequality holds

(G+D)⊤P + P (G+D) ≤ 0 .

Lemma 5. We are given two stable matrices A1, A2 ∈
Rn×n . There are two positive definite matrices P1 > 0 ,
P2 > 0 exist such that

A⊤
1 P1 + P1A1 +A⊤

2 P2 + P2A2 < 0

then sum of two stable matrices A1 +A2 is stable if

(A1 +A2)
⊤P1 + P1(A1 + A2) + ‖A⊤

2 ∆+∆A2‖In < 0

where P2 = P1 +∆

To ensure that above inequality holds for the sum of
matrix A1 + A2 , the exponential degree of stability to
matrix A1 or A2 need to be increased, [6, 7].

3 Main results

3.1 Equivalent subsystem approach

In this section, The Equivalent subsystem design pro-
cedure to design of robust decentralized switched con-
troller is obtained. Designed decentralized switched con-
trollers guarantee for the closed-loop uncertain complex
system the parameter dependent quadratic stability/
quadratic stability and performance. Above design pro-
cedure performs on the subsystem level. Lets’ split un-
certain polytopic system to the form

ẋ = (Ad(ξ, θ) +Ao(ξ, θ))x +B(ξ, θ)u (10)

or for the i -th vertex

ẋ =
(

Adoi +

p
∑

j=1

Adjiθj +Aoi +

p
∑

j=1

Aojiθj

)

x

+
(

Boji +

p
∑

j=1

Bjiθj

)

u; i = 1, 2, ..., N . (11)

Define, poi, i = 1, 2, ..., N as

poi = max
θ∈Ωθ

(max(real(eig(Aoi +

p
∑

j=1

Aojiθj))));

pi = poi + δ , δ > 0 (12)

where δ is the demanded closed-loop system degree of
stability. Lemmna 2 implies, that all eigenvalues of matrix

Aoi = Aoi +

p
∑

j=1

Aojiθj − piIn ∈ Rn×n;

i = 1, 2, ..., N

(13)

are lying in the left half complex plane, matrix Aoi is
stable. Substituting (11) to (9) one obtains

Adoi +

p
∑

j=1

Adjiθj +Aoi + piIn = Aei(θ) +Aoi (14)

where

Aei(θ) = Adoi +

p
∑

j=1

Adjiθj + piIn

= blockdiag{A1ei(θ), . . . , Amei(θ)} ∈ Rn×n

is in the vertex of Equivalent subsystem matrix. Equal-
ity (12) implies that if matrix Aei(·) is stable with de-
signed decentralized controller for all i = 1, 2, . . . , N than
complex system will be stable if the sum of two matri-
ces (12) will be stable for all i = 1, 2, . . . , N . For h-th,
h = 1, 2, . . . ,m closed-loop equivalent subsystem with
PID controller one has

Ahci = Ahei +Bhi (PIDh);

h = 1, 2, . . . ,m; i = 1, 2, . . . , N . (15)
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Note, that

Aci = blockdiag{A1ci, ..., Amci},

Ac = blockdiag{Ac1, Ac2, ..., AcN}.

Assume, the closed-loop matrices Ahci, h = 1, 2, . . . ,m ,
i = 1, 2, . . . , N are due to designed PIDh switched con-
troller are robust stable for all θ ∈ Ωθ then the complex

system Ao + Ac for adequate choice of δ [6, 7] will be
stable. For checking the closed-loop stability of uncer-
tain polytopic system, the multiple Lyapunov function
or quadratic stability approach should be used. Complex
system is stable if Lyapunov matrix Pi , i = 1, 2, . . . , N
(for quadratic stability if Lyapunov matrix P ) exist such
that the following inequality holds

(Aoi+Aci)
⊤Pi+Pi(Aoi+Aci) < 0; i = 1, 2, . . . , N. (16)

Theorem 1. Assume, that the h-th, h = 1, 2, . . . ,m de-
centralized controllers with control algorithm (6) guaran-
tee the closed-loop robust stability and performance for
the h-th subsystems Ahci , that is closed-loop the i -th
equivalent subsystems Aci , i = 1, 2, . . . , N is stable and
satisfy inequality (14) or Lemma 5 . Designed decentral-
ized robust switched controller guarantees the robust sta-
bility with performance of uncertain complex plant (1).

P r o o f . Inequality (14) imply if Pi > 0, i =
1, 2, . . . , N exists closed-loop equivalent subsystems are
stable. From (11) and (12) one obtains

Aoi +Aci = Aoi +

p
∑

j=1

Aojiθj − piIn +Adoi

+

p
∑

j=1

Ajiθj +Bi PID + piIn; i = 1, 2, . . . , N. (17)

The sum of two stable matrices Aoi + Aci is stable
if the conditions (14) or Lemma 5. are satisfied which
proved that complex uncertain closed-loop system with
decentralized switched controller is stable.

From (15) one could observed that for designed static
decentralized output/state feedback controller the eigen-
values of closed-loop complex system with equivalent sub-
system approach and equivalent interaction and real plant
with real interaction are the same, which not may hold
(or with small errors) for designed dynamic controllers.

3.2 Robust decentralized switched controller design
using equivalent subsystem approach

This subsection formulates theoretical approach to ob-
tain decentralized robust PID switched controller design
procedure for the uncertain complex plant such a way
that switched controller design approach carried out on
the subsystem level using in this paper proposed equiv-
alent subsystem approach. The obtained results ensure
parameter dependent quadratic stability with multiple

Lyapunov function/guadratic stability – one Lyapunov
function to uncertain polytopic closed-loop systems for

θ ∈ Ωθ , θ̇ ∈ Ωt . The uncertain equivalent subsystem
model in the i -th vertex is in the form (12)

ẋh = Ahei(θ) +Bhi(θ)uh, yh = Chxh (18)

where (e-omitted)

Ahei(θ) = Aohei +

p
∑

j=1

Aheijθj = Aohi +

p
∑

j=1

Ahijθj

Aohi = Adoih + piIh .

Assume, candidate Lyapunov function for the h-th sub-
system is as follows

Vh(xh, θ, ξ) = x⊤
h Ph(θ, ξ)xh =

x⊤
h

(

Pho(ξ) +

p
∑

j=1

Phj(ξ)θj

)

xh ∈ Rnh×nh (19)

where Phj(ξ) =
∑N

i=1
Phijξi , j = 0, 1, 2, . . . , p , h =

1, 2, . . . ,m . The first time derivative of Lyapunov func-
tion (17) is given as follows

dVh(·)

dt
= v⊤h





0 Ph(θ, ξ) 0

Ph(θ, ξ) Ph(θ̇, ξ) 0
0 0 0



 vh ,

v⊤h =
[

ẋ⊤
h x⊤

h u⊤
h

] (20)

where

Ph(θ̇, ξ) =
N
∑

i=1

(

p
∑

j=1

Phij θ̇j

)

ξi .

To split Lyapunov matrix (Ph(·) from the system ma-
trices and ensure convex properties with respect to un-
certain variable ξ and switching variable θ a new auxil-
iary matrices Ni , i = 1, 2, . . . , 6 with dimensions Ni ∈
Rnh×nh , i = 1, 2; N3 ∈ Rnh×mh ; Ni ∈ Rmh×nh ,
i = 4, 5; N6 ∈ Rmh×mh are introduced as follows

2[N1ẋh +N2xh +N3uh]
⊤(ẋh −Ahei(θ)−Bhi(θ)uh) = 0

(21)

2[N4ẋh +N5xh +N6uh]
⊤(uh − [kph(θ)Ch + kIh]xh−

[kdh(θ)Ch 0]ẋh) = 0 (22)

Denote Kh(θ)=[kph(θ)Ch kIh] , KDh(θ)=[kdh(θ)Ch 0].
Summarizing (18), (9) and (20) the time derivative of
Lyapunov function to the closed-loop system were ob-
tained for the h-th equivalent subsystem and the i -th
vertex (subscript “e” is omitted)

dVhi(·)

dt
= v⊤h Whivh ≤ 0 (23)
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where

Whi = Wohi +

p
∑

j=1

Wijhθj ≤ 0 ,

Wohi = {wo
klhi}3×3, Wijh = {wj

klhi} ,

wo
11hi = N⊤

1 +N1−N4Kdho −K⊤
dhoN4 ,

wo
12hi = Poi −N⊤

1 Ahio +N2 −N⊤
4 Kho −K⊤

dhoN5 ,

wo
13hi = −N⊤

1 Bhio +N3 +N⊤
4 −K⊤

dhoN6 ,

wo
22hi=

p
∑

j=1

Pjiθ̇j−N⊤
2 Ahio−A⊤

hioN2−N5⊤Kho−K⊤
hoN5,

wo
23hi = −N⊤

2 Bhio −A⊤
hioN3 +N⊤

5 −K⊤
hoN6 ,

wo
33hi = −N⊤

3 Bhio −B⊤
hioN3 +N⊤

6 +N6 ,

wj
11hi = −N4⊤Kdhj −K⊤

dhjN4 ,

wj
12hi = Pji −N⊤

1 Ahij −N⊤
4 Khj −K⊤

dhjN5 ,

wj
13hi = −N⊤

1 Bhij −K⊤
dhjN6 ,

wj
22hi = −N⊤

2 Ahij −A⊤
hijN2 −N⊤

5 Khj −K⊤
hjN5 ,

wj
23hi = −N⊤

2 Bhij −A⊤
hijN3 −K⊤

hjN6 ,

wj
33hi = −N⊤

3 Bhij −B⊤
hijN3 ,

h = 1, 2, . . . ,m; i = 1, 2, . . . , N .

Closed-loop system is parameter dependent quadrati-

cally stable/ quadratically stable for all θ ∈ Ωθ, θ̇ ∈ Ωt

and uncertainty ξ ∈ Ωξ if matrix Whi ≤ 0 for h =
1, 2, . . . ,m , i = 1, 2, . . . , N To obtain the guaranteed cost
control algorithm (H2 -approach), the time derivative of
Lyapunov function (21) and quadratic cost function (5)
to the Bellman Lyapunov equation (7) need to be substi-
tuted

Beih = v⊤h (Whi + Lh)vh = v⊤h Hhi(θ)vh ≤ 0 (24)

where

Lh =





Sh 0 0
0 Qh 0
0 0 Rh



 , Hhi = {hklij}3×3 .

From (23) and (24) it is clear that only three variables
are changing by summing three matrices Sh with wo

11hi ,
Qh with wo

22hi and Rh withwo
33hi , that is

h11hi = wo
11hi +

p
∑

j=1

wj
11hiθj + Sh ,

h12hi = wo
12hi +

p
∑

j=1

wj
12hiθj ,

h13hi = wo
13hi +

p
∑

j=1

wj
13hiθj ,

h22hi = wo
22hi +

p
∑

j=1

wj
22hiθj +Qh ,

h23hi = wo
23hi +

p
∑

j=1

wj
23hiθj ,

h33hi = wo
33hi +

p
∑

j−1

wj
33hiθj +Rh .

Inequality (23) is convex with respect to switched pa-
rameter θ and uncertain parameter ξ , therefore (22)
holds if and only if (22) is negative definite for all ver-
tices i = 1, 2, . . . , N , h = 1, 2, . . . ,m and j = 1, 2, . . . , p .
Robust decentralized switch controller design procedure
is based on the inequality (23).

Let’s summarize the obtained robust decentralized
controller design procedure, (16)–(22), to the following
theorem.

Theorem 2. The uncertain polytopic complex system (1)
is robust parameter dependent quadratically stable/
quadratically stable with guaranteed cost if for the per-
formance matrices Qh, Sh, Rh , h = 1, 2, . . . ,m and for

the given bounds θ ∈ Ωθ , θ̇ ∈ Ωt , ξ ∈ Ωξ there exist
auxiliary matrices Ni , i = 1, 2, . . . , 6 , symmetric positive
definite matrices Pij , i = 0, 1, 2, . . . , N , j = 1, 2, . . . , p
such that P (θ, ξ) is positive definite and for each subsys-
tem controller gain matrices kph(θ) , kIh(θ) and kdh(θ) ,
h = 1, 2, . . . ,m such that inequality (22) holds.

P r o o f . Sufficient conditions of above Theorem re-
sults from the previous consideration.

Note, that equivalent subsystem method to design of
decentralized controller former has been obtained in the
frequency domain with sufficient and necessary stability
conditions [11]. In this paper, obtained equivalent subsys-
tem method in the time domain is with sufficient stability
condition. Both methods ensuring the decentralized con-
troller design procedure on the subsystem level.

R e m a r k 1 . For ideal switching the switching rate

of variation θ, θ̇ is infinite (positive, negative). In this
case only in wo

22hi the variable Pij = 0, j = 1, 2, . . . , p ,
i = 1, 2, . . . , N . For non-ideal switching the entries of

vector θ̇ are finite numbers.

R e m a r k 2 . Robust decentralized controller design
procedure could be obtained from (22) if p = 0 is put.

R e m a r k 3 . Robust decentralized gain scheduled
controller design procedure could be obtained if one

changes the set Ωθ (2) to the set Ωθ := {θj ∈ 〈θj θj〉 ,
j = 1, 2, . . . , p

In this section the new equivalent subsystem method
in time domain and originally design procedure to ro-
bust decentralized switched controller design are ob-
tained. The obtained robust switched decentralized con-
troller design procedure guarantee to closed loop un-
certain complex plant with multiple Lyapunov func-
tion/Lyapunov function parameter dependent quadratic
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stability/ quadratic stability and performance for all com-
plex closed loop system.

4 Examples

For the purpose of demonstrating the advantages of
the equivalent subsystem approach to design of robust
decentralized switched controller, on the subsystem level,
three example will show the effectiveness of the design
procedure. For the first uncertain complex plant, two ap-
proaches provided the solution for non-ideal switching pa-

rameters with maximal rate of variation θ̇max = 10/s and
ideal switching parameters with infinite rate of switching
parameters changes. PID (dynamic) robust decentralized
output feedback switched controller were designed for the
first and second example and PI (static) robust decen-
tralized output feedback switched controller for non-ideal
switching were designed for the third example. In the
above three examples arbitrarily switching algorithm and
H2 design procedure defined by (22) will be used. The un-
certain polytopic complex switched system has two ver-
tices, fourth order and two subsystems is described as

(A(θ, ξ), B(θ, ξ) =
(

A1(θ), B1(θ)
)

ξ1+
(

A2(θ), B2(θ)
)

ξ2, X(θ) = Xo +X1θ1 (25)

For the first vertex (i = 1) of complex system param-
eters are as follows.

A10 =







−1 0.3 0.28 0.1
0.05 −0.71 0.1 0.25
0.12 0.05 −0.65 0.31
0.27 0.13 0.07 −0.7






,

A11 =







−0.1 0.03 0.1 0.005
0.002 −0.2 0.02 0.025
0.02 0.05 −0.2 0.005
0.03 0.03 0.03 −0.2






,

B⊤
10 =

[

1 0 0 0
0 0 1.1 0

]

, B⊤
11 =

[

0.1 0 0 0
0 0 0.23 0

]

,

C1 = [ 1 0 ] .

The second vertex, (i = 2)

A20 =







−1.3 0.4 0.52 0.15
0.07 −0.85 0.2 0.35
0.17 0.07 −0.7 0.4
0.32 0.18 0.09 −0.86






,

A21 =







−0.23 0.1 0.1 0.003
0.001 −0.2 0.015 0.022
0.07 0.01 −0.24 .1
0.02 0.015 0.01 −0.3






,

B⊤
20 =

[

1.2 0 0 0
0 0 1.3 0

]

, B⊤
21 =

[

0.1 0 0 0
0 0 0.3 0

]

,

C2 = [ 1 0 ] .

For the three examples quadratic cost function is used
in the form of QSR

Jh =

∫ ∞

to

(x⊤
hQhxh + ẋ⊤

h Shxh + u⊤
hRhuh) dt ,

h = 1, 2, . . . ,m .

The parameters of positive definite matrices are:

Qh = qhIh , qh = 0.01 ,

Sh = shIh , sh = 0.01 , Rh = rhI , rh = 1 .

All Lyapunov matrices are bounded by 0 < P < r0I, r0 =
1000 and δ = 0.01, (12). For switched variable holds
θ1 ∈ 〈0, 1〉 . For non-ideal switching the rate of variation

switching variable is θ̇1max = 10/s . The first and second
equivalent subsystem should be obtained from (10), (11),
and (12). From (10) and two vertices one obtains pi1 =
0.3814 – the first vertex and for the second one pi2 =
0.5353.

4.1 Example: Non-ideal switching algorithm

Using the H2 performance to robust output feed-
back PID switched controller design procedure, devel-
oped in this paper (22), the following robust decentralized
switched controller is obtained for the first and second
subsystems. The first subsystem, h = 1

R1(s) = −4.2203−
3.0513

s
− 1.7455s

+
{

−8.8051−
2.539

s
− 1.7313s

}

θ1

and the second subsystem, h = 2

R2(s) = −9.4973−
9.5308

s
− 3.9991s

+
{

−8.8051−
9.9232

s
− 0.027s

}

θ1 (26)

Note that the sign (−1) means negative feedback. De-
signed robust decentralized switched controller ensures
for the closed-loop equivalent subsystems the following
eigenvalues.

i = 1, h = 1, EGq11 = {−0.913; −0.398± 0.0426i},

h = 2, EGq12 = {−0.799± 0.732i; −0.322},

i = 2, h = 1, EGq21 = {−1.219; −0.2111; −0.232},

h = 2, EGq22 = {−0.736± 0.599i; −0.334} .

Eigenvalues of uncertain closed-loop complex plant with
two vertices when real subsystems are substitute with
equivalent subsystems are as follows:

i = 1; EGc = {−1.123± 0.7355i; −1.493;

− 0.6267± 0.095i; −0.9262},

i = 2; EGc = {−2.045;−1.1513; ±0.6474i;

− 0.6154± 0.1494i; −1.104} .
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Eigenvalues of uncertain closed-loop complex plant
with two vertices and with real subsystems for designed
of two PID robust decentralized controller are as follows

i = 1; EGl = {−0.983± 0.9261i;−0.5966;

− 0.9831± 0.3645i;−0.83282},

i = 2;EGl = {−0.9509± 0.9313i;−1.3368;

− 7532± 0.1582i;−1.1262}.

Note, that due to (15) for the designed of decentralized
dynamic PID controller the closed-loop eigenvalues of
complex plant with equivalent subsystems and with real
subsystems are slightly different.

4.2 Example: ideal switching algorithm

For ideal switching rate of variation switching param-

eter θ̇1max is equal to infinite. For this case θ1 serve as
a switching variable. For the same system, performance
and constraints as in Section 4.1 the following robust de-
centralized controller are obtained as follows. The first
subsystem, h = 1,

R1(s) = −4.4926−
2.952

s
− 1.7523s

+
{

−4.8104−
2.73902

s
− 1.7497s

}

θ1

and second one, h = 2

R2(s) = −8.4269−
7.2154

s
− 3.9981s

+
{

−6.9459−
8.2777

s
− 1.5657s

}

θ1 . (27)

Eigenvalues of closed-loop real complex plant in two ver-
tices with the designed of two PID robust decentralized
switch controller are as follows:

i = 1; EGl = {−0.8719± 0.793i;

− 0.6725± 0.045i;−1.0771± 0.0248i},

i = 2; EGl = {−0.8436± 0.8059i;

− 1.6108;−0.6702± 0.1606i;−1.084}.

4.3 Example: design of robust PI decentralized switched
controller, non-ideal switching algorithm

For the case of the same system parameters, perfor-
mance and constraints as in the first example in this sub-
section the robust static output feedback PI switched de-
centralized controllers for non-ideal switching has been
designed. For two subsystems the following decentralized
controller are obtained:
the first subsystem

R1(s) = −4.2568−
3.0732

s
+ {−4.998−

2.5766

s
}θ1

and the second subsystem

R2(s) = −2.4968−
4.7581

s
+ {−2.4995−

4.7493

s
}θ1 .

Due to static output feedback (PI controller) the closed-
loop eigenvalues for the equivalent subsystems and real
ones are the same (15) as follows:

The first vertice

i = 1; EGo = {−4.6111;−1.6888± 1.5239i;

− .5784± 0.0814i;−0.9177} .

The second vertice

i = 2; EGo = {−5.8118;−1.9536± 1.499i;

− .6073± 0.1175i;−1.1298} .

Results of robust decentralized controller design on the
subsystem level mentioned above prove that closed -loop
system of complex plant is stable. For this examples it
is not needed to check the closed-loop stability of real
plant with designed decentralized controller using (14).
The designed decentralized controller ensures the closed-
loop stability with performance defined by quadratic cost
function QSR for all polytopic uncertain complex plant
which proves the effectiveness of proposed method. Af-
ter some modification above design procedure one could
obtain the robust decentralized controller design method
using another control methods like as L2 gain (H∞ ), re-
gional pole placement approaches and so on.

5 Conclusion

This paper is devoted to obtain the original equivalent
subsystem method in time domain to design of decentral-
ized controller and a new design procedure to design of
the robust decentralized switched controller on subsys-
tem level. Consequently the advantages of the proposed
method can be summarized as follows:

• the method of equivalent subsystem approach is devel-
oped to design of decentralized controller on subsystem
level,that is the order of design model is equal to order
of corresponding subsystem,

• the robust switched decentralized controller is de-
signed on the subsystem level such that the stability
of closed-loop complex system is guaranteed,

• less conservative results with respect to using dwell-
time approach can be obtained for the continuous time
system,

• for the switched decentralized robust controller design
there is no need to use for continuous time system the
approach of “dwell-time” which markedly complicates
the design procedure,

• the rate of the switching variable can be prescribed by
the designer (actually above value defined the value of
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dwell-time), which opens the new possibilities for prac-
tical realizations and development of new theoretical
approaches,

• the obtained design procedure to design of robust de-
centralized switched controller for output/state feed-
back ensures the closed loop parameter dependent
quadratic stability/ quadratic stability of switched sys-
tems and guaranteed cost,

• the obtained robust decentralized design procedure
can be easily implemented to the standard LMI or BMI
approaches,

• the obtained design procedure can be easily trans-
formed to the case of robust gain scheduled decentral-
ized controller design, robust decentralized controller
design for continuous-time uncertain polytopic system.

Numerical examples illustrate the effectiveness of the
proposed approach.
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[15] J. Lunze and F. Lamnabhi-Lagarrigue, “”, Handbook of Hybrid

Systems Control: Theory, Tools, Applications, Cambridge Uni-

versity Press, 2009.

[16] J. Geromel and P. Colaneri, “Stability and Stabilization of Con-
tinuous-Time Switched Linear Systems”, SIAM Journal on Con-

trol and Optimization, vol. 45, no. 5, pp. 1915–1930, 2006.

[17] R. Guo and Y. Wang, “Stability analysis for a class of switched
linear systems”, Asian Journal of control, vol. 14, no. 3, pp. 817-826,
2012.

[18] L. Allerh and U. Shaked, “Robust Stability and Stabilization of
Linear Switched Systems With Dwell Time”, IEEE Transactions

on Automatic Control vol. 56, no. 2, pp. 381–386, 2011.

[19] J. Lygeros, “An Overview of Research Areas Hybrid Control”,
44th IEEE Conference on Decision and Control, 2005 and 2005
European Control Conference. CDC-ECC, pp. 5600–5605, 2005.

[20] M. Cao and A. S. Morse, “Dwell-time switching”, Systems and

Control Letters, vol. 59, pp. 57-65, 2010.

[21] M. Matthias, A. Muller and . Liberzon, “Input/output-to state
stability of switched nonlinear systems”, ACC, pp. 1708-1712,
2010.
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