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In recent years, artificial neural networks (ANNs) have grown a lot and helped solve numerous problems in wireless communication systems. 
We have evaluated the performance of the Bidirectional-Long-Short-Term-Memory (Bi-LSTM) recurrent neural networks (RNNs) for joint 

blind channel equalization and symbol detection using a variety of activation functions (Afs) for the gate units (sigmoid) of Bi-LSTMs without 

requiring any prior knowledge of channel state information (CSI). The performance of Bi-LSTM networks with different AFs found in the 
literature is compared. This comparison was carried out with the assistance of three different learning algorithms, namely Adam, rmsprop, and 

SGdm. The research findings clearly show that performance, as measured by equalization accuracy, can be improved. Furthermore, demonstrate 

that the sigmoid gate activation function (GAF), which is commonly used in Bi-LSTMs, does not significantly contribute to optimal network 
behavior. In contrast, there are a great many less well-known AFs that are capable of outperforming the ones that are most frequently utilized. 
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1. Introduction 

 

The construction of contemporary digital broadband 

wireless communication networks has allowed for the 

provision of a wide variety of high-speed services, including 

voice as well as multimedia. These services require a dramatic 

increase in transmission speed through a dispersive channel. 

Wireless communication channel issues could significantly 

reduce performance. Imperfections in the transmitted signals 

are caused both by the physical characteristics of the wireless 

communication channels and by the myriad of unknown 

effects that occur in the surrounding environment. For 

instance, the transmitted signals are susceptible to a variety of 

impairments, such as inter-symbol interference (ISI), doppler 

shift (DS), and multipath fading. All of these things hurt the 

recovered signals and tend to slow down and limit the amount 

of data that can be sent and received during data 

communication [1]. It is imperative to reduce the negative 

effects of channel-induced impairments in order to boost the 

data transfer rates that can be achieved during transmission. 

The existence of ISI makes it more difficult to make 

effective use of frequency bandwidth and improve 

performance. One of the most important aspects of modern 

communication systems is signal equalization because it is 

able to get rid of interference caused by ISI. In equalization, 

the challenge is to reconstruct the sequences that have been 

transmitted while mitigating the effects of ISI and noise, based 

on observations of the channel. In order to accomplish this 

goal, numerous equalization mechanisms that can reduce the 

influence of ISI in fading channels have been proposed over 

the course of the past few years. When the data rate is 

extremely high, the ISI can spread out over thousands of 

symbols, which can make the configuration and 

implementation of these filters prohibitively complex [2, 3]. 

In recent years, multicarrier orthogonal frequency division 

multiple access (OFDMA) schemes have become the 

preeminent principle for broadband wireless applications. 

This is due to their high spectral efficiency, which can be 

achieved by selecting a unique set of overlapping orthogonal 

subcarriers, as well as their resistance to channel selectivity 

[4]. In spite of the fact that OFDMA has a number of 

advantages, it also has a number of disadvantages, such as  

a high peak-to-average power ratio (PAPR), which leads to  

a low level of power efficiency at the mobile units [5]. To find 

a solution to the issue of a high PAPR, researchers looked into 

a modified form of OFDMA known as single carrier FDMA 

(SC-FDMA). SC-FDMA is characterized by its utilization of 

SC modulation and frequency domain equalization (FDE).  

In addition to this, its performance and complexity are 

comparable to those of the OFDMA scenario with a low 

PAPR value. Since that time, it has been integrated into the 

LTE standard for use in uplink transmission [6]. 

 

 

1.1. Related works 

 

Recently, ANN have garnered a lot of attention for their 

use in channel equalization due to the fact that they are 

capable of nonlinear mapping between input and output 

spaces [7]. In addition, equalization can be interpreted as a 

classification problem, which is a scenario in which the NN 

approach is entirely appropriate. As a direct result of this, 

a wide variety of NN-based equalizers with a variety of 

different structures are utilized in the process of channel 

equalization. The authors in [8, 9], demonstrated that  

NN-based nonlinear equalizers can provide better system 
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performance than conventional linear equalizers in terms of 

bit error rate (BER). In [10], the authors use an information 

theoretic approach to formulate adaptive channel equalization 

as a conditional probability distribution learning problem. 

Huang et al. propose a complex-valued multilayer neural 

network based on the Kalman filter for channel equalization 

in digital communication systems [11]. 

A number of machine learning techniques have been 

applied to the problem of nonlinear equalization in the 

absence of perfect channel state information (CSI). These 

techniques, which make it possible for the receiver side to 

realize equalization in an adaptive manner, include deep 

neural networks (DNN) [12], support vector machines (SVM) 

[13], and convolutional neural networks (CNN) [14]. 

Deep learning neural networks (DLNNs) have recently 

found applications in a variety of fields, including image 

processing, speech recognition [15] and natural language 

processing [16]. CNN, one of the most prevalent DL 

structures, has been successfully applied for image 

processing, such as image denoising [17] and image 

classification [18]. There are a lot of different reasons why 

DLNNs are used in a variety of different fields [19]. One of 

them is the amazing learning capabilities of the DLNNs from 

training data sets. Another reason is that due to the rapid 

improvement of the parallel processing capabilities of highly 

specialized chips such as graphic processing units (GPU), the 

implementation of DLNNs can be easily parallelized on 

parallel architectures and easily implemented with low data 

types of accuracy. This results in DLNN-based approaches 

being significantly more effective than they were in the past. 

Based on these benefits, DLNNs were brought to the physical 

level and did very well in many different fields [20]. 

 

 

1.2. Motivations and contributions 

 

Because the input signals are processed without regard 

for the temporal relationship, the traditional ANN-based 

equalizer is incapable of capturing time series information 

[21].  On the other hand, the task of signal equalization is 

typically a temporal processing issue, making the application 

of our proposed modified gate activation functions (GAFs) 

Bi-LSTM-based equalizers an excellent candidate. 

RNNs have memory or feedback connections, which 

connect the adjacent neurons in the same layer to one another. 

As a result, they are better suited to learning sequential or 

time-varying problems, like translating text or recognizing 

speech. When it comes to the classification and forecasting of 

sequential data, RNNs are one of the most widely used DL 

techniques. 

Similar to the bidirectional recurrent neural network  

(B-RNN), the Bi-LSTM network [22] uses two distinct 

hidden layers to analyze data in both directions (first, from the 

past to the future, and second, from the future to the past) 

before feeding the results into a single output layer [23]. The 

only thing that differentiates them from one another is that the 

LSTM blocks take the place of the hidden units in the B-RNN 

network. Bi-LSTM has two hidden states for training, while 

LSTM has one. Bi-LSTM not only has the same features as 

an RNN, but it can also sense how information from the past 

and the future affects the information the network is currently 

processing. 

Activation functions are the fundamental building blocks 

of decision-making in neural networks. Additionally, they 

assess the output of the neural nodes in the network, which 

makes them crucial to the performance of the entire network 

and plays a significant role in the convergence of the learning 

algorithms. Therefore, when using neural networks for any 

purpose, it is crucial to pick the best activation function. 

Throughout the entirety of this work, we model the 

channel equalization problem in single-carrier FDMA as a DL 

task. We then propose a novel suggestion for a combined 

channel equalization and signal detection scheme that is based 

on a modified GAFs Bi-LSTM-NN. This scheme takes 

features from the SC-FDMA system's received message and 

labels them based on the constellation map that is used at the 

transmitter. The method that has been proposed treats channel 

equalization and signal detection as "black boxes," and  

a DNN model is used to continually approach the functions 

that these black boxes perform. This model can 

simultaneously perform equalization and symbol decoding 

despite lacking information about the channel's state (CSI).  

In this paper, we present a set of AFs that improve the learning 

process by addressing the problem of vanishing gradients and 

result in more accurate classifications than traditional ones. 

The current "sigmoid" AF, which is called a gate activation 

function (GAF), will be replaced by these AFs. 

In conclusion, the results of the simulations demonstrated 

that the modified GAFs Bi-LSTM-NN scheme we proposed 

performed better in terms of the bit error rate (BER) than other 

commonly used signal equalization schemes, whether they 

were NN-based or not. This persuasive example demonstrates 

the usefulness of DL in SC-FDMA systems. 

 

The major contributions are summarized below. 

 

1) Constructing a novel Bi-LSTM network with different 

GAFs from the literature in the equalization and symbol 

detection process as an alternative to the conventional 

sigmoid function. 

2) Building an effective and trustworthy SC-FDMA 

receiver with implicit channel-state equalization and 

symbol detection. 

3) We analyzed the performance of the modified GAFs  

Bi-LSTM-based deep network model in the equalization 

and symbol detection while using a variety of 

optimization algorithms, including Adam, RMSProp, and 

SGDm, to determine which one produced the most 

effective and trustworthy model. 

4) We compared, in terms of BER, the effectiveness of the 

suggested model to that of linear equalizers (LEs), 

including zero-forcing (ZF) and minimum main square 

error (MMSE), as well as to that of other existing  

NN-based blind equalization schemes, like the 

convolutional neural network-based (CNN-based) blind 

equalization algorithm described in [24]. 

 

The rest of the paper will be broken down into the 

following sections: The system is described in detail in the 

next section. The deep learning model and offline training of 

the proposed scheme are introduced in sections 3 and 4, 

respectively. The outcomes of the simulation are then 

displayed. Lastly, the research is concluded. 
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2. System model 

 

Figure 1 shows the proposed SC-FDMA system 

architecture based on reference [6]. Each of N subcarriers is 

assigned to a single user, where M=Nu×N, M are the overall 

system subcarriers and Nu are the total number of users 

supported by the SC-FDMA system. All of this is 

accomplished immediately after the N-point fast Fourier 

transformation. After the M-point IFFT, a cyclic prefix would 

be inserted into the signal that had a length Lcp that was either 

equal to or greater than the length of the channel's transfer 

function Lch. This formula 𝑔𝑘 = 𝐹𝑀
𝐻𝑇𝑘𝐹𝑁𝑠𝑘 , gives a vector 

representation of the kth user's transmitted signal in the time 

domain (TD), excluding the Lcp. Here, sk is the kth user's N×1   

 

symbol vector, Tk is an M × N sub-carrier mapping matrix, and 

𝐹𝑁
𝐻 and 𝐹𝑀

𝐻 are the FFT and IFFT matrices, respectively. 

Assuming that, the transfer function of the channel between 

the kth user and the base station (hk) with maximum delay 

spread Lch smaller than the Lcp to completely eliminate the ISI. 

The process will be carried out backwards, or in reverse 

order, at the other end (the receiving side). First, the CP is 

taken out. Then, the SC-FDMA symbols are turned into FD 

by using M-points FFT and sub-carrier demapping to get the 

FD signal for the kth user. The ISI's effects are then lessened 

by equalizing the FD received signal, which can be done in 

many ways, such as in [6]. Demodulate the signal and look for 

the kth user's original transmitted symbols after an N-point 

IFFT TD transformation has been performed.

 

The proposed method utilizes a DNN model rather than 

the conventional channel equalization techniques that are 

currently in use. Because of this, an end-to-end approach is 

created, which makes it possible to retrieve the original 

information directly from the information that was 

transmitted without having to delve into the complexities 

of the channel equalization and symbol detection systems. 
 

 

3. Deep learning model 

 

For processing and predicting sequence data, recurrent 

neural networks are a useful type of neural network. 

Compared to other neural networks, RNNs are more 

vulnerable to vanishing gradients as they process more steps 

[25]. LSTMs and GRU-based RNNs are approaches that can 

be used to overcome the limitations that are presented by 

simple RNNs [26]. 

A variation of the recurrent LSTM neural network, the 

Bi-LSTM network is one that is capable of discovering long-

term relationships between the time steps of input data. 1997 

was the year that Hochreiter and Schmidhuber first conceived 

of the idea that would become LSTM. It is an advancement of 

RNNs that makes use of gates and has the ability to learn long-

term dependencies and remember input information for an 

extended period of time [22]. 

Input, forget, and output gates compose the LSTM 

architecture [27]. Figure 2 illustrates the primary structure of 

the LSTM cell, and the mathematical formulation of the 

LSTM configuration is given by Equations (1) through (6) 

which can be found in reference [28]. 

 

In Figure 2, xt is the current input vector, ct is the current 

cell state vector, ct-1 is the old cell state vector , it is the input 

gate vector, ft is the forget gate vector, ot is the output gate 

vector, ht-1 is the old cell output vector, ht is the current cell 

output vector, σg is the gate activation function (sigmoid 

function), σc is the state activation function (tanh function),  

R are the recurrent weight matrices, W are the input weight 

matrices, and b are the biases vectors. ⨀ denotes the 

Hadamard Product (Elementwise Multiplication). 

 
Fig. 1 The proposed SC-FDMA scheme 

𝐢𝐭 = 𝛔𝐠(𝐰𝐢𝐱𝐭 + 𝐑𝐢𝐡𝐭−𝟏 + 𝐛𝐢) (1) 

𝐨𝐭 = 𝛔𝐠(𝐰𝐨𝐱𝐭 + 𝐑𝐨𝐡𝐭−𝟏 + 𝐛𝐨) (2) 

𝐠𝐭 = 𝛔𝐜(𝐰𝐠𝐱𝐭 + 𝐑𝐠𝐡𝐭−𝟏 + 𝐛𝐠) (3) 

𝐟𝐭 = 𝛔𝐠(𝐰𝐟𝐱𝐭 + 𝐑𝐟𝐡𝐭−𝟏 + 𝐛𝐟) (4) 

𝐜𝐭 = 𝐟𝐭⨀𝐜𝐭−𝟏 + 𝐢𝐭⨀𝐠𝐭 (5) 

𝐡𝐭 = 𝐨𝐭 ⨀ 𝛔𝐜(𝐜𝐭) (6) 
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At time t, the input vector xt is inserted in the network. The 

input (it) and forget (ft) gates enable the LSTM NN to 

effectively store long-term memory. The it finds the 

information that will be used with the ct-1 to obtain the ct based 

on the xt and the ht-1. The ot finds the ht by using the   ht-1 at 

the ct and the xt. The  allows forgetting and discarding the 

information by the xt and ht of the last process. Using the ft 

and it, LSTM can decide which information is abandoned and 

which is retained. gt defined in Eq. 3 is the cell candidate at 

time t which is a tanh layer and with the it in Eq. 5, these two 

decide on the current information that should be stored in the 

ct. Finally, the current cell output (ht) can be gotten by Eq. (6), 

where the old cell output (ht-1) and the current input (xt) pass 

through the sigmoid function (σg) and are then multiplied by 

the current cell state (ct) after passing through the tanh 

function (σc). 

Unlike regular LSTM, which only allows for one possible 

direction of information flow, using either a backward or 

forward layer, Bi-LSTM allows for two-way information flow 

through the backward and forward layers [29]. The output 

layer of the Bi-LSTM model can simultaneously obtain data 

from the past and future states. 

Figure 3 depicts the overall Bi-LSTM architecture, and the 

mathematical formulation of the Bi-LSTM configuration is 

given by Equations (7) through (9) which can be found in 

reference [30]. 

 

𝐀𝐭
𝐟 = 𝛔𝐜 (𝐖𝐱𝐀

𝐟 𝐱𝐭 + 𝐖𝐀𝐀
𝐟 𝐀𝐭−𝟏

𝐟 + 𝐛𝐀
𝐟 ) (7) 

𝐀𝐭
𝐛 = 𝛔𝐜 (𝐖𝐱𝐀

𝐛 𝐱𝐭 + 𝐖𝐀𝐀
𝐛 𝐀𝐭−𝟏

𝐛 + 𝐛𝐀
𝐛 ) (8) 

𝐲𝐭 = 𝛔𝐠 (𝐖𝐀𝐲
𝐟 𝐀𝐭

𝐟 + 𝐖𝐀𝐲
𝐛 𝐀𝐭

𝐛 + 𝐛𝐲) (9) 

  

Here, At
f is the forward-layer output sequence, At

b is the 

backward-layer output sequence, yt is the output vector, σg 

is the sigmoid activation function used to merge At
f, At

b 

and W are the weight matrices, and b are the biases vectors.  
 

 
 

Fig. 3 Bi-LSTM neural network architecture 

 

The learning algorithm, the behavior of the connections 

between network units, and the activation functions utilized 

by the network are the three primary aspects of neural 

networks that play significant roles in determining how well 

a neural network performs [31, 32]. 

 

 

3.1. Activation functions 

 

In neural networks, the sigmoid and hyperbolic tangent 

functions are the ones that are used most often as AFs. On the 

other hand, numerous independent studies have investigated a 

variety of other AFs. In this paper, we investigate the 

performance of the DNN Bi-LSTM to combine channel state 

equalization and symbol detection in SC-FDMA wireless 

communication systems when these AFs are used in place of 

the sigmoid GAF of the basic Bi-LSTM block. Table 1 shows 

a list of the most-used AFs: tanh, Cloglogm, Elliott, Bi-tanh1, 

Bi-tanh2, Rootsig, Softsign, Wave, and Aranda [33]. 

 

 

4. Offline training of the suggested modified  

GAFs Bi-LSTM-based deep learning model 

 

Training must be done offline because the proposed model 

needs a long training period and there are many variables, like 

weights and biases, that must be tuned at the time of training. 

During online implementation, the trained model is used to 

extract the transmitted data. 

It is a difficult challenge to obtain a large amount of 

labelled data for training purposes, which is necessary for the 

majority of machine learning tasks. On the other hand, a 

simulation can be used to quickly obtain training data for 

channel equalization problems. Once the channel parameters 

and model have been chosen, it is easy and straightforward to 

get the training data. 

Offline training of the neural networks is carried out using 

simulated data. When you run a simulation, you begin with a 

random message s and then send SC-FDMA frames to the 

receiving end through a simulated channel model. This 

 

 
 

Fig. 2 LSTM neural network architecture 
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process is repeated until the simulation is complete. There is 

one SC-FDMA symbol contained within each frame.  

SC-FDMA frames that contain various channel defects are 

utilized in order to retrieve the SC-FDMA signal that was 

received. Following the application of the distortion to the 

channel and the removal of the CP, the incoming signals y are 

collected for use as training samples. As shown in Fig. 1 and 

Fig. 5, the network's input data are the signals that are received 

(y) and the actual information messages (s). These signals 

serve as supervision labels. The same dataset is used for 

training and testing all equalizers, whether they are  

CNN-based or Bi-LSTM-based with a modified GAFs. 

 

 

Table 1: Label, definition, and corresponding derivative, 

for each activation function 

 
 

 
 

Fig. 4 Modified GAFs Bi-LSTM-based DL model 

 

 

The weights and biases of the recommended equalizers 

will be adjusted (tuned) prior to the deployment with the 

help of the appropriate optimization algorithm. This will 

take place as the proposed modified GAFs Bi-LSTM-

based deep-learning channel equalizers and symbol 

detectors are created, as shown in Fig. 4. 

To achieve the best possible channel equalization and 

symbol detection for the SC-FDMA wireless communication 

system via the proposed modified GAFs Bi-LSTM-based 

deep-learning model, a variety of optimization algorithms are 

used. Adaptive moment estimation (Adam), root mean square 

propagation (RMSProp), and stochastic gradient descent with 

momentum (SGDm) are just a few examples. The distance 

between the network output and the desired output is 

measured using a loss function, and by minimizing the loss 

function and updating the weights and biases, the optimization 

algorithms train the model until it reaches the ideal network 

parameters (best weights and biases). The loss function can be 

expressed in a variety of different ways, but in its most basic 

form, it is the difference between the messages that were 

originally sent and the output of the network. In our 

experiments, we made use of a loss function known as the 

cross-entropyex, which can be expressed in the following 

way: 

 
Loss cross-entropyex=

− ∑ ∑ 𝒔𝒊𝒋(𝒌) log (𝒔̂𝒊𝒋(𝒌))𝒄
𝒋=𝟏

𝑵
𝒊=𝟏 ,      (10) 

where, c is the class number, N is the sample number, sij is the 

ith transmitted data sample for the jth class and 𝒔̂𝒊𝒋 is the 

modified GAF Bi-LSTM-based deep Learning model 

response for sample i class j. 

We change the GAF (sigmoid) from Table 1 during the 

offline training period to see how it affects the performance 

of our deep learning model during the online installations. 

Last but not least, following the offline training, the 

model will be able to automatically recover data without the 

need for any explicit channel estimation or symbol detection 

processes. These processes are carried out in conjunction with 

one another. Training offline to obtain a Bi-LSTM NN-based 

learned DL model is depicted in Figure 5. 

 

 
 

Fig. 5 Offline training of the modified GAFs Bi-LSTM-based 

DL model 

 

 

5. Simulation results 

 

The effectiveness of the proposed modified gate activation 

functions (GAFs) (Table 1) Bi-LSTM-based configurations 

for the channel equalization and symbol detection strategies 

in SC-FDMA systems was demonstrated through a series of 

experiments. The proposed DLNN-based equalizer was 

trained offline using the SGDM, RMSProp, and Adam [34] 

No. Label 
Activation 

function 
Derivative function 

1 tanh 𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥  

𝑒𝑥 + 𝑒−𝑥 
𝑓′(𝑥)

= 1 − 𝑡𝑎𝑛ℎ(𝑥)2 

2 Cloglogm 

𝑓(𝑥)

= 1 − 2𝑒−0.7𝑒𝑥

+ 0.5 

𝑓′(𝑥) = 7𝑒𝑥−0.7𝑒𝑥
/5 

3 Elliott 

𝑓(𝑥)

=
0.5𝑥

1 + |𝑥|
+ 0.5 

𝑓′(𝑥) =
0.5

(1 + |𝑥|)2 

4 Bi-tanh1 

𝑓(𝑥)

=
1

2
[tanh (

𝑥

2
)

+ tanh (
𝑥 + 1

2
)]

+ 0.5 

𝑓′(𝑥)

=
1

4
(𝑠𝑒𝑐ℎ2 (

𝑥 + 1

2
)

+ 𝑠𝑒𝑐ℎ2 (
𝑥

2
)) 

5 Bi-tanh2 

𝑓(𝑥)

=
1

2
[tanh (

𝑥 − 1

2
)

+ tanh (
𝑥 + 1

2
)]

+ 0.5 

𝑓′(𝑥)

=
1

4
(𝑠𝑒𝑐ℎ2 (

𝑥 + 1

2
)

+ 𝑠𝑒𝑐ℎ2 (
𝑥 − 1

2
)) 

6 Rootsig 

𝑓(𝑥)

=
𝑥

1 + √1 + 𝑥2

+ 0.5 

𝑓′(𝑥)

=
1

√𝑥2 + 1 + 𝑥2 + 1
 

7 Softsign 
𝑓(𝑥)

=
𝑥

1 + |𝑥|
+ 0.5 

𝑓′(𝑥) =
1

(1 + |𝑥|)2
 

8 Wave 
𝑓(𝑥)

= (1 − 𝑥2)𝑒−𝑥2
 

𝑓′(𝑥)

= 2𝑥(𝑥2 − 2)𝑒−𝑥2
 

9 Aranda 

𝑓(𝑥)
= 1

− (1 + 2𝑒𝑥)−1 2⁄  

𝑓′(𝑥)

= 𝑒𝑥(2𝑒𝑥 + 1)−3 2⁄  
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learning optimizers, then compared to the more widely used 

linear equalizers like the Zero-Forcing (ZF) and Minimum 

Mean Square Error (MMSE). Also compared to a different 

DL model that was based on a conventional neural network 

(CNN) [24] in terms of bit error rates (BERs) at various 

signal-to-noise ratios (SNRs), utilizing the data sets that were 

collected. The training data is gathered for four subcarriers. 

The transmitter sends the SC-FDMA packets to the receiver, 

each containing one SC-FDMA data symbol. Table 2 contains 

information about the SC-FDMA system and the channel 

specifications. Table 3 summarizes the DL-Bi-LSTM NN 

architecture parameters and training settings that were used in 

this article. 

 

 
Table 2: SC-FDMA system architecture and channel 

specifications 

 

Parameter Value 

No. of Subcarriers = M-

IFFT 
64 

Subcarriers allocated to each 

user = N-IFFT 4 

Subcarrier spacing 15KHz 

Cyclic prefix length 20 

Modulation Format QPSK 

Channel model Vehicular A 

Channel estimation Perfect 

Equalization 

ZF, MMSE, and Proposed 

Modified GAFs Bi-LSTM-based 

DL Model 

 

Table 3: DL model architecture 

 

Parameter Value 

Sequence input size 128 

Bi-LSTM layer size (No. of 

Hidden Units) 128 

Fully connected layer size (No. 

of Classes) 
256 

Loss function Cross-entropyex 

Mini batch size 1000 

Numbers of Epochs 4 

Optimization approaches Adam, RMSProp, and 

SGdm 

Gate Activation Function 

(GAF) From Table 1 

State Activation Function 

(SAF) Tanh 

Training Options 

Initial Learning Rate 0.05 

Learning Rate Drop Factor 0.8 

 

It is well-known that linear equalization may amplify the 

noise at the spectral null in the case of deep-fading channels, 

which has a negative effect on the performance of the SC-

FDMA system. Fig. 6, shows that over a wide range of signal-

to-noise ratios (8-20 dB), all of the proposed modified gate 

activation functions (GAFs) Bi-LSTM -based equalizers 

employing the Adam learning algorithm and crossentropyex 

loss function outperform the ZF and MMSE equalizers. When 

dealing with low dB levels (between 4 and 8 dB), the 

proposed modified GAFs Bi-LSTM-based equalizers 

outperform the ZF alone. For dB levels below 4, the proposed 

modified GAFs Bi-LSTM-based equalizers perform worse 

than the linear equalizers but with acceptable levels. 

Moreover, it is evident from Fig. 6, that all of the proposed 

modified GAFs Bi-LSTM-based equalizers outperform the 

existing CNN approach [24] at all SNR levels. 

Also, from Fig. 6, we can observe that, at the last SNR 

after which we have zero error, the proposed Tanh GAF 

outperforms all of the other proposed GAFs Bi-LSTM-based 

equalizers in the case of the Adam learning algorithm and the 

cross-entropyex loss function. 

Figure 7 also demonstrates that the proposed modified 

Tanh and Wave GAFs Bi-LSTM-based equalizers using the 

rmsprop learning algorithm and cross-entropyex loss function 

outperform the other proposed GAFs (Cloglogm, Softsign, 

Elliott, Bitanh1, Bitanh2, Aranda, and Rootsig), the default 

GAF (Sigmoid), and the traditional liner equalizers (ZF or 

MMSE) at SNRs between 7 and 20 dB. Also, the proposed 

modified Tanh and Wave GAFs B Bi-LSTM-based equalizers 

perform better than all of the other models except the MMSE 

at lower dB levels (4.25 to 7). Furthermore, it is clear from 

Fig. 7, that out of all of the proposed modified GAFs Bi-

LSTM-based equalizers, the proposed Softsign, Cloglogm, 

Wave, and Tanh GAS outperform the existing CNN model at 

all SNR levels. This is the case regardless of whether the SNR 

level is low, medium, or high. 

Also, from Fig. 7, we can observe that, at the last SNR after 

which we have zero error, the proposed Tanh GAF 

outperforms all of the other proposed modified GAFs Bi-

LSTM-based equalizers in the case of the rmsprop learning 

algorithm and the cross-entropyex loss function. 
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Moreover, it is evident from Fig. 8 that all of the proposed 

modified GAFs (Tanh, Wave, Cloglogm, Softsign, Bitanh2, 

Rootsig, Elliott, Bitanh1, and Aranda) and the default GAF 

(Sigmoid) Bi-LSTM-based equalizers using the SGDM 

learning algorithm and cross-entropyex loss function 

outperform the linear equalizers (ZF and MMSE equalizers) 

at SNRs ranging from 10 to 20 dB. Furthermore, it is clear 

from Fig. 8, that all of the proposed modified GAFs Bi-

LSTM-based equalizers outperform the CNN approach at all 

SNRs. Lastly, the proposed Aranda GAF did better than all of 

its competitors at all levels of SNR (from 7 to 20 dB). 

Also, from Fig. 8, we can observe that, at the last SNR 

after which we have zero error, the proposed Aranda GAF 

outperforms all of the other proposed modified GAFs Bi-

LSTM-based equalizers in the case of the sgdm learning 

algorithm and the cross-entropyex loss function. 

We may conclude from Figs. 6, 7, and 8 that, the best-

proposed gate activation functions, which give the best 

performance in the modified GAFs Bi-LSTM-based 

equalizers and symbol detectors under the previous system 

settings, are listed in the following table. 

 

Fig. 6 BERs of the proposed modified DL GAFs BILSTM-based equalizers, the traditional linear equalizers, and the CNN-

based equalizer using the Adam learning algorithm, and the cross-entropyex loss function. 

 

Fig. 7 BERs of the proposed modified DL GAFs BILSTM-based equalizers, the traditional linear equalizers, and the CNN-

based equalizer using the RMSProp learning algorithm, and the cross-entropyex loss function. 
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Table 4: The best-proposed gate Activation Functions 

(GAFs) 
 

No AF Last dB BER 
Optimization 

Algorithm 

1 Tanh 12 dB 0.0001221 Adam 

2 Tanh 12 dB 0.0001546 Rmsprop 

3 Aranda 12 dB 0.0001963 SGdm 

 

Figure 9 clearly shows that the proposed GAF Tanh 

Bi-LSTM-based equalizer using the Adam learning 

algorithm and cross-entropyex loss function outperforms 

all of the other proposed GAFs at all SNRs. 
 

 
Fig. 9 Performance comparison between the best proposed 

modified DL GAFs BILSTM-based Equalizers using different 

optimization algorithms and cross-entropyex Loss Function. 

 

 

5.1.  Loss comparison 

 

It is helpful to keep an eye on the loss curves during the 

DL equalizers' training processes. As the training progresses, 

these curves provide feedback to the user, allowing them to 

decide whether to continue or abandon the training process. 

Fig. 10, depicts the Adam, rmsprop, and sgdm optimization 

loss curves of the best GAFs that yield the best performance, 

respectively, elucidating the results displayed in Fig. 9. 

 

 
Fig. 10 Loss curves comparison of the best proposed GAFs 

BILSTM-based equalizers using different optimization 

algorithms and Cross entropy loss function. 

 

 

5.2. Accuracy comparison 

 

The accuracy of the proposed and other evaluated 

equalizers is a metric for how well they retrieve the 

 
Fig. 8 BERs of the proposed modified DL GAFs BILSTM-based equalizers, the traditional linear equalizers, and the 

CNN-based equalizer using the SGdm learning algorithm, and the cross-entropyex loss function. 
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transmitted data. The ratio of correctly received symbols to 

the total number of symbols transmitted is what we mean 

when we talk about accuracy. 

 

Table 5: Accuracy comparison 

 

Equalization Model Accuracy 

BEST GAF BILSTM-based Adam CE-SD 100 % 

BEST GAF BILSTM-based Rmsprop CE-SD 100 % 

BEST GAF BILSTM-based Sgdm CE-SD 100 % 

CNN-based Adam CE-SD 99.97 % 

CNN-based RMSprop CE-SD 99.98 % 

CNN-based SGDm CE-SD 99.96 % 

MMSE 99.98 % 

ZF 99.92 % 

The accuracy results that were obtained in Table 5 and Fig. 

11, highlight the BER performance results that were obtained 

in Fig. 9, and emphasize that the best proposed modified 

GAFs Bi-LSTM-based channel equalizers have learned 

effectively, as shown by those results. Additionally, the 

provided BER performances in Figs. 6, 7, and 8 are 

highlighted by the accuracy of the conventional linear channel 

equalizers and the CNN-based channel equalizers presented 

in Table 5. 

 

 
Fig. 11 Accuracy curves comparison of the best proposed 

GAFs BILSTM-based equalizers using different optimization 

algorithms and cross entropy loss function. 

 

5.3. Computational complexity of the proposed equalizers 

 

The complexity comparison of the proposed modified 

GAFs' Bi-LSTM-based channel equalization and symbol 

detection DL learning models in SC-FDMA is presented 

empirically in terms of the training time, which is executed 

offline. 

The amount of time spent in finding the optimal NN 

parameters (such as weights and biases) that will minimize the 

errors using the training datasets is referred to as "training 

time." The training process is computationally complex 

because it necessitates continuously evaluating the loss 

function with multiple parameter values. 

Table 6 lists the consumed training time for the proposed 

modified GAF's BILSTM-based channel equalization and 

symbol detection deep learning models. The used computer 

has windows 10 installed, an Intel(R) core(TM) i5-2450M 

CPU running at 2.50 GHz, and 8 GB of RAM. 

Table 6 shows that the best proposed GAF Tanh Bi-

LSTM-based channel equalization and symbol detection deep 

learning model trained with both Adam optimizer and 

rmsprop optimizer requires a moderate amount of time 

compared to its own peers. While the best-proposed GAF 

Aranda BILSTM-based channel equalization and symbol 

detection deep learning model trained with the SGDM 

optimizer takes the longest time among its peers, the longest 

GAF training time indicates the highest computational 

complexity. According to Table 6 and Fig. 9, the Tanh GAF 

was the best proposed modified GAF Bi-LSTM-based DL 

model; however, this came at the cost of increased 

computational complexity. 

 
Table 6: Processing time comparison between the modified 

GAFs Bi-LSTM-based channel equalizers 

 

 

AF 

GAF Bi-

LSTM -

based Adam 

CE-SD 

(M:S) 

GAF Bi-

LSTM -

based 

Rmsprop 

CE-SD 

(M:S) 

GAF Bi-

LSTM -

based Sgdm 

CE-SD 

(M:S) 

Sigmoid 33:31 19:05 18:31 

Cloglogm 54:42 27:00 26:53 

Elliott 49:57 19:13 19:04 

Bitanh1 57:31 28:57 28:47 

Bitanh2 56:28 28:26 29:03 

Aranda 64:13 40:02 39:25 

Rootsig 52:15 20:06 20:08 

Softsign 48:52 24:34 24:44 

Wave 71:09 22:38 21:26 

Tanh 52:04 23:48 23:53 

 

Table 7: Training time comparison between the CNN-

based channel equalizers 

 

 

In contrast, we are able to draw the following conclusion 

from Table 7: The CNN-based approach requires the longest 

training time for all of the training scenarios (Adam, sgdm, 

and rmsprop), which is an indication of its increased 

computational complexity in comparison to our proposed 

modified DL GAFs Bi-LSTM-based equalizers. 

 

 

6. Conclusion 

 

In this paper, we investigate how changing the standard 

gate activation function (sigmoid) in a deep learning Bi-

LSTM network can improve the combined channel 

equalization and symbol detection. The modified GAF Bi-

LSTM network is trained offline with a collected signal 

sequence dataset. The Adam, RMSprop, and SGDM 

optimization learning algorithms are used to update the 

CNN-based CE-

SD 

Adam 

CNN-based CE-

SD 

RMSprop 

CNN-based CE-SD 

SGDm  

(M:S) (M:S) (M:S) 

169:10 99:28 81:56 
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proposed model's internal weights and biases. The efficiency 

of the modified deep learning model that was suggested has 

been analyzed, and its results have been compared to those of 

other common linear equalizers such as ZF and MMSE, as 

well as the results of other DL models such as CNN-based 

equalizers. Simulation results show that the presented  

SC-FDMA wireless communication system equipped with an 

equalization schemes based on modified GAFs Bi-LSTM 

networks outperform the SC-FDMA systems with 

equalization based on the ZF, MMSE, and CNN-based 

equalizers in terms of BER. The computational complexity of 

the proposed modified GAFs Bi-LSTM-based equalizers was 

examined, and we discovered that the proposed model offers 

moderate computational complexity compared to the current 

CNN-based approach. The results also showed that some 

lesser-known activation functions, such as Wave, Cloglogm, 

Aranda, Softsign, and Rootsig, can outperform the commonly 

used "sigmoid" gate activation function when subjected to 

different deep learning model settings (i.e., training 

algorithm, initial learning rate, learning rate drop factor, etc.). 

In the future, we will work on different kinds of neural 

networks that should be tested for these kinds of 

achievements. 
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