
Journal of Electrical Engineering, Vol. 74, No. 4, 2023, pp. 282-292 

 sciendo 
PAPER______________________________________________________________________________________________________________________________________________________________________________________________________________________ 

 

_________________ 

Tekirdağ Namık Kemal University, Vocational School of Technical Sciences, Biomedical Device Technology Department,  

59100 Tekirdağ, Turkey 
ekarakulak@nku.edu.tr 

 

https://doi.org/10.2478/jee-2023-0035, Print (till 2015) ISSN 1335-3632, On-line ISSN 1339-309X 
© This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivs License 

(http: //creativecommons.org/licenses/by-nc-nd/4.0/). 

 

Conformable fractional-order derivative based  

adaptive FitzHugh-Nagumo neuron model 

 
Ertuğrul Karakulak 

 

 
Various neuron models have been proposed and are extensively examined in the scientific literature. The FitzHugh-Nagumo neuron model is 
one of the most well-known and studied models. The FitzHugh-Nagumo model is not biologically consistent but operationally simple. 

A fractional-order derivative is described as a derivative with a non-integer order. Caputo, Grünwald-Letnikov, and Riemann-Liouville are 

some of the well-known fractional order derivatives. However, a simple fractional-order derivative called the conformable fractional-order 
derivative has been proposed in the literature and it is much simpler to use. In literature, there are already neuron models with fractional-order 

derivatives. In this study, a FitzHugh-Nagumo model circuit with a conformable fractional derivative capacitor and conformable fractional 

derivative inductor is proposed. The proposed circuit is modelled, and its simulation results are given. The simulation results reveal that the 
model circuit shows both slow and fast adaptation in firing frequency under sustained current stimulation. 
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1. Introduction 

 

Biological neuron models represent the mathematical description of action potentials experienced in the neuron axon. The 

two main features expected from neuron models are biological consistency and mathematical simplicity [1]. The simplified 

neuron models are useful when the literal behaviour of neurons is not critical [2]. The FitzHugh-Nagumo (FHN) neuron model 

has been suggested in 1961 by Richard FitzHugh [3]. The circuit of the FHN model has been proposed by Jinichi Nagumo et al. 

in 1962 [4]. Their works have influenced many studies in the field of neuroscience [1,2]. Although the FHN model is not 

biologically consistent, it is mathematically simple [1-4]. It has a pair of differential equations to model action potentials in the 

neuron axon and it works as a relaxation oscillator [3,4]. The FHN model is a simplified 2D version of the Hodgkin-Huxley [5] 

neuron model. Although the Hodgkin-Huxley neuron model is one of the most consistent models with neuron physiology and 

electrophysiology, it is also one of the most detailed and complex neuron models. The Izhikevich neuron model, like the FHN 

model, has a nonlinearity and can model neuron behaviours pretty accurately [6]. The Izhikevich model is not inspired by neuron 

biophysics, but it reveals the spiking and bursting behaviour of cortical nerves [7]. One of the neuron models with the least 

computational complexity is the Integrate-and-fire (IF) model which has been proposed by Louis Lapicque [8]. In Lapicque’s 

model, the cell membrane is modelled as a capacitor and the capacitor is discharged when the capacitor voltage exceeds a certain 

threshold voltage. This discharge stage is called “fire” and various Integrate-and-fire (IF) models have been proposed in the 

literature [9,10].  

Neural adaptation or sensory adaptation can be simply defined as a decreased response of the neural system to a constant 

stimulus. Considering a biological neuron, the decrease in the number of spikes per second of the neuron membrane voltage in 

response to a constant stimulus can be called neural adaptation.  This adaptation behaviour in a biological neuron is due to the 

calcium current in the cell membrane and the changes in the calcium concentration between the inside and outside of the cell 

[11-13]. There are two types of adaptation: fast and slow. Fast adaptation occurs in milliseconds, whereas slow adaptation can 

take minutes or even hours [13].  

Fractional calculus or non-integer order calculus dates back to the Leibnitz era [14], but nowadays it attracts attention with 

its use in various fields such as mathematics, engineering, and neuroscience [15,16]. It is also a method that is successfully used 

in the modelling of complex systems [17]. The fractional-order derivative can simply be expressed as a derivative with a non-

integer order. Various fractional-order derivative equations have been proposed in the literature. Some well-known examples of 

them are Caputo [18], Riemann–Liouville [19], and Grünwald-Letnikov [20]. Most of these equations make use of fractional-

order integrals which are hard to evaluate. Khalil et al. proposed an equation, they named “Conformable Fractional-Order 

Derivative” (CFD) in 2014 [21], and Abdeljawad made final refinements in 2015 [22]. CFD simply consists of a first-order 

derivative multiplied by the fractional-order power of the function variable. CFD offers a physically interpretable solution for 

the fractional-order derivative and stands out for its simplicity. Due to its low complex features, it has become a hot research 

topic in the scientific literature [23,[24]. Fractional order derivatives have also been proposed for modelling neurons and 

neurological systems [25,26]. CFD has been proposed to re-examine and modify some of the known neuron models [27]. The 

FHN neuron model based on fractional order derivative (Grünwald-Letnikov [20] equation is used) has also been suggested [28]. 

However, to the best of our knowledge, no one has suggested a CFD-based FHN neuron model circuit yet. In this study, a CFD-

based FHN neuron model is suggested, and its adaptation abilities are shown using simulations. Such a model offers richer 

dynamics than the FHN circuit. 

 



Journal of Electrical Engineering, Vol. 74, No. 4, 2023                                               283 

 

This paper is organized as follows. In the second section, CFD, CFD capacitor, and CFD inductor are introduced. The FHN 

model circuit with a CFD capacitor and a CFD inductor is briefly explained in the third section. The simulation results are given 

in the fourth section. The paper is concluded with a conclusion section. 

 

 

2. Conformable fractional derivative, CFD capacitor and CFD inductor 

 

The fractional-order derivative can simply be expressed as a derivative with a non-integer order. Numerous methods have 

been proposed in the scientific literature for fractional-order derivatives [18-20]. Most of these methods are computationally 

complex. Khalil et al. proposed a simple and well-behaved fractional derivative naming it the “Conformable Fractional 

Derivative” [21]. Detailed information on CFD can be found in [21-23]. CFD can be expressed as 
 

𝑑𝛼𝑓(𝑡)

𝑑𝑡𝛼 = 𝑓′(𝑡) 𝑡(1−𝛼) =  
𝑑𝑓(𝑡)

𝑑𝑡
𝑡(1−𝛼),      (1) 

 

where α is the order of fractional derivative and it must be provided that 1 ≥  𝛼 > 0. According to Eq. (1), multiplying the 

ordinary first-order derivative by 𝑡(1−𝛼) is sufficient to obtain CFD of αth order. It should be noted that CFD offers a physically 

interpretable solution for the fractional-order derivative and stands out for its simplicity [21-23].  

A CFD capacitor and a CFD inductor have already been proposed in literature [29,30]. Capacitor current equation and 

inductor voltage equations have derivatives. Equation (2) and Eq. (3) show the capacitor current and inductor voltage formulas, 

respectively. 
 

𝑖𝑐(𝑡) = 𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
,        (2) 

 

𝑉𝐿(𝑡) = 𝐿
𝑑𝑖𝐿(𝑡)

𝑑𝑡
,        (3) 

 

where ic is capacitor current, vc is capacitor voltage, iL is inductor current, vL is inductor voltage, C is capacitance, and L is 

inductance respectively.  

CFD capacitor current equation and CFD inductor voltage equations can be obtained by replacing the ordinary time derivative 

with CFD. Equation (4) and Eq. (5) show the CFD capacitor and CFD inductor constitutive laws respectively. 
 

𝑖𝑐 = 𝐶∝
𝑑∝𝑣

𝑑𝑡∝ = (𝐶∝𝑡(1−∝))
𝑑𝑣𝑐

𝑑𝑡
       (4) 

 

𝑉𝐿 = 𝐿𝛽
𝑑𝛽𝑖𝐿

𝑑𝑡𝛽 = (𝐿𝛽𝑡(1−𝛽))
𝑑𝑖𝐿

𝑑𝑡
       (5) 

 

where 𝐶∝ is the CFD capacitor capacitance,  𝐿𝛽 is the CFD inductor inductance, 𝛼 and 𝛽 are the fractional order of the CFD 

capacitor and the CFD inductor respectively.  

According to Eq. (4) and (5), the values of the capacitor and inductor have become time-variant and increase with time. The 

symbols of the CFD capacitor and the CFD inductor are shown in Fig. 1.  

 

 
(a)                    (b) 

 

Fig. 1. (a) Symbol of the CFD capacitor and (b) symbol of the CFD inductor 

 

 

3. FitzHugh-Nagumo model circuit with CFD capacitor and CFD inductor 

 

The FHN model circuit is extensively examined and modified versions of the circuit are suggested in the scientific literature 

[28,31,32]. It is also an example of a relaxation oscillator and has the same properties as the two-dimensional Van Der Pol 

Oscillator [33, 34]. However, unlike the Van Der Pol oscillator, the FHN model needs an external excitation current. In addition, 

the FHN model is derived from the phase plane analysis of the Hodgkin-Huxley model. The basis of this neuron model is 

independent of the sodium and potassium diffusion behaviour in the neuron membrane. The model consists of two differential 

equations. One of them defines the membrane potential (Eq. (6)) and has a cubic nonlinearity. This equation has an external 

excitation current variable. The second differential equation defines the rate of the change of the recovery variable (Eq. (7)) and 
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has a linear dynamic structure. This equation provides slow negative feedback. The membrane potential equation of the FHN 

model is, 

 
𝑑𝑣

𝑑𝑡
= 𝑣 −

𝑣3

3
− 𝑤 + 𝑅𝐼𝑒𝑥𝑡 ,       (6) 

 

where v is a membrane potential-like variable, w is the recovery variable of the model, Iext is the external stimulus current of the 

model, and R is the external stimulus coefficient.  

The recovery variable equation is given as, 

 
𝑑𝑤

𝑑𝑡
=

𝑣+𝑎−𝑏𝑤

𝜏
,        (7) 

 

where a, b, and τ are parameters which determine the duration and the fixed point of the recovery.  

The Nagumo circuit can be seen in Fig. 2(a). The external current source is designated as Iext in the circuit. The value v, which 

denotes the membrane potential, is equivalent to the capacitor voltage and the recovery variable (w) is the inductor current. The 

cubic parameter in the FitzHugh equations (Eq. (6)) is modelled with a tunnel diode. 

 

 

                  (a)        (b)  

 

 

Fig. 2. (a) Nagumo circuit and (b) The modified Nagumo circuit modified with a CFD capacitor and a CFD inductor 

 

The Nagumo circuit in Fig. 2(a) is modified with a CFD capacitor and a CFD inductor to obtain the new FHN circuit shown 

in Fig. 2(b). For the circuit shown in Fig. 2(a), the capacitor current and the inductor voltage are obtained by Kirchhoff’s current 

and voltage laws. Equation (8) and (9) describe the state space system of the FHN model. 

 

𝐶
𝑑𝑣

𝑑𝑡
= 𝐼𝑒𝑥𝑡 − 𝑤 − 𝑓(𝑣)       (8) 

 

𝐿
𝑑𝑤

𝑑𝑡
= 𝑣 − 𝑤𝑅 + 𝐸        (9) 

 

where R, L, C, and E denote resistance, inductance, capacitance, and the reverse voltage source, respectively. The DC voltage 

sources connected in reverse (E) in the Nagumo circuits represent the resting membrane potential (voltage) of a neuron which is 

in resting state.  f(v) is the function that expresses the current-voltage characteristic of the tunnel diode.  

Equations (8) and (9) turn into FitzHugh equations given in Eq.s (6) and (7) with proper selection of the parameters. The 

CFD capacitor and the Linear Time-Invariant (LTI) capacitor are connected in parallel and the CFD inductor and the LTI inductor 

are connected in series for the modified FHN circuit as seen in Fig. 2(b). The equivalent capacitance of the CFD capacitor and 

the LTI capacitor connected in parallel and the equivalent inductance of the CFD inductor and the LTI inductor connected in 

series are given in Eqs. (10) and (11), respectively.   

 

𝐶𝑒𝑞(𝑡) = 𝐶𝑝 + 𝐶∝𝑡(1−∝)      (10) 

 

𝐿𝑒𝑞(𝑡) = 𝐿𝑠 + 𝐿𝛽𝑡(1−𝛽)      (11) 

 

Cp is the capacitance of the LTI capacitor, Ls is the inductance of the LTI inductor, Ceq is the equivalent capacitance, and Leq is 

the equivalent inductance.  
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Using the Kirchhoff’s Laws, the state space system of the modified FHN model can be given as 

 

 
𝑑𝑣

𝑑𝑡
=

𝐼𝑒𝑥𝑡−𝑤−𝑓(𝑣)

𝐶𝑒𝑞(𝑡)
=

𝐼𝑒𝑥𝑡−𝑤−𝑓(𝑣)

𝐶𝑝+𝐶∝𝑡(1−∝) 
      (12) 

 
𝑑𝑤

𝑑𝑡
=

𝑣−𝑤𝑅+𝐸

𝐿𝑒𝑞(𝑡)
=

𝑣−𝑤𝑅+𝐸

𝐿𝑠+𝐿𝛽𝑡(1−𝛽)      (13) 

 

As it can be seen in Eq. (12) and (13), both the rate of change of the membrane potential and the recovery variable have 

become time-variant due to the terms 𝑡(1−∝) and 𝑡(1−𝛽). Therefore, it is possible to obtain neural adaptation behaviour with this 

time dependency. But, in the absence of stimulation, the change in the behaviour of the model does not conform to the adaptation 

behaviour of the biologic neuron. In this case, the model must be modified so that the terms 𝑡(1−∝) and  𝑡(1−𝛽) should be modified 

to be reset to zero at the start of each excitation. The external excitation pulse given in Fig. 3 can be described as 

 

𝐼𝑒𝑥𝑡 = 𝐼𝑝  [𝑘][𝑢(𝑡 − 𝑡𝑠𝑡𝑎𝑟𝑡[𝑘]) − 𝑢(𝑡 − 𝑡𝑠𝑡𝑜𝑝[𝑘])],    (14) 

 

where Ip is the magnitude of the external current, tstart is the start time of the pulse, tstop is the stop time of the pulse and, u() is the 

step function.  

 

 
 

Fig. 3. The kth external excitation or stimulation pulse 

 

In this case, tonset, which is the start time of the kth pulse, can be defined as 

 

𝑡𝑜𝑛𝑠𝑒𝑡[𝑘] = 𝑡𝑠𝑡𝑎𝑟𝑡[𝑘]       (15) 

 

Then, the CFD based FHN onset model can be given as 

 
𝑑𝑣

𝑑𝑡
=

𝐼𝑒𝑥𝑡−𝑤−𝑓(𝑣)

𝐶𝑒𝑞(𝑡)
=

𝐼𝑒𝑥𝑡−𝑤−𝑓(𝑣)

𝐶𝑝+𝐶∝(𝑡−𝑡𝑜𝑛𝑠𝑒𝑡[𝑘])(1−∝) 
     (16) 

 
𝑑𝑤

𝑑𝑡
=

𝑣−𝑤𝑅+𝐸

𝐿𝑒𝑞(𝑡)
=

𝑣−𝑤𝑅+𝐸

𝐿𝑠+𝐿𝛽(𝑡−𝑡𝑜𝑛𝑠𝑒𝑡[𝑘])(1−𝛽)     (17) 

 

According to Eqs. (14) and (15) the terms (𝑡 − 𝑡𝑜𝑛𝑠𝑒𝑡[𝑘])(1−∝)  and    (𝑡 − 𝑡𝑜𝑛𝑠𝑒𝑡[𝑘])(1−𝛽) is reset to zero at the beginning of 

each excitation. Thus, the model’s behaviour is prevented from changing during each stimulation and refractory period.  

Simulink block diagram of the CFD-based FHN neuron model is given in Fig. 4. It has three subsystems which makes the 

preparation of the diagram easier and allows having modularity. Their internal structures are also shown in Fig. 4. 
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(a) 

        

(b)                                         (c)                                                                    ( d) 

 

Fig. 4. (a) Simulink block diagram of the CFD based FHN neuron model, (b) The block diagram of the subsystem named 

SubforLeq, (c) The block diagram of the subsystem named SubforCeq, and (d) The block diagram of the subsystem named 

SubforOnset. 

 

The block diagram of the subsystem named SubforLeq, which is used to calculate the equivalent inductance of series-

connected 𝐿𝑠 and 𝐿𝛽, is shown in Fig. 4b. The block diagram of the subsystem named SubforCeq, which includes blocks to 

calculate the equivalent capacitance of parallel connected capacitors 𝐶𝑝 and 𝐶𝛼 , is shown in Fig. 4c. This subsystem has a Matlab 

Function block which calculates the value of  𝑡1−∝. Therefore, using SubforLeq and SubforCeq, the equivalent capacitance and 

the equivalent inductance of the modified Nagumo circuit shown in Fig. 2b are obtained. The block diagram of the subsystem 

named SubforOnset, which is used to calculate the start time of the kth pulse, 𝑡𝑜𝑛𝑠𝑒𝑡[𝑘], is shown in Fig. 4d. This block also 

possesses a Matlab Function block which calculates the piecewise function given in Eq. (18). 

 

𝑧 = {
𝑎1, 𝑢 > 0
𝑏1, 𝑢 ≤ 0

        (18) 

 

 

4. Simulation results 

 

The modified FHN circuit model is created with SimulinkTM toolbox of MatlabTM and its simulation results are obtained. The 

parameters in Tab. 1 are chosen as simulation parameters. In addition to the parameters taken from the [33], 𝐶𝛼 and 𝐿𝛽 parameters 

are chosen as 5% of Cp and Ls parameters, respectively. 
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Table 1. Parameters of simulations 

Parameters Values 

E 0.7 V 

R 0.8 Ω 

C 1 F 

𝐶∝ 0.05 F/s(1−∝) 

𝐿 12.5 H 

𝐿𝛽 0.625 H/s(1−β) 

 

 

Parameters α and β are chosen as equal and the obtained simulation results are shown in Fig. 5-11. Simulations are made for 

0.2, 0.4, 0.5, 0.6, and 0.8 values of α and β. When the α and β parameters are equal to 1, (𝑡 − 𝑡𝑜𝑛𝑠𝑒𝑡[𝑘])(1−∝) and 

(𝑡 − 𝑡𝑜𝑛𝑠𝑒𝑡[𝑘])(1−𝛽) multipliers become 1 and the proposed model turns into the ordinary FHN model. Therefore, no simulations 

have been made for these values. When the α and β parameter values are 0, the multipliers of (𝑡 − 𝑡𝑜𝑛𝑠𝑒𝑡[𝑘])(1−∝)and 

(𝑡 − 𝑡𝑜𝑛𝑠𝑒𝑡[𝑘])(1−𝛽)are equal to (𝑡 − 𝑡𝑜𝑛𝑠𝑒𝑡[𝑘]) and the CFD derivative is not defined as told in Section 2.  For this reason, this 

value is also not used in the simulations. As seen in Fig. 5(a)-9(a), the curve shown in blue is the output voltage signal of the 

model and the other shown in red is the external excitation signal. The recovery variable signal of the model and the external 

excitation signal are shown in blue and red respectively in Fig. 5(b)-9(b). Each simulation is done for 2000 seconds. In order to 

see the effect of the excitation, the excitation begins 100 seconds after the start of the simulation and ends 100 seconds before 

the simulation ends. The model output voltage drifts towards the resting voltage level in the absence of excitations. A time-

dependent decrease in the frequency of the output signal of the model can be seen in Fig.s. 5-9. Four of these simulations are 

done by giving ∝ and 𝛽 with an increment of 0.2 to demonstrate the behavior of the modified Naguma circuit. In the cases, when 

α and β values are 0.2 and 0.4, i.e., both of the values are lower than 0.5, the model exhibits fast adaptation behaviour as shown 

in Fig. 5 and 6. In those cases, when α and β parameters are 0.6 and 0.8, i.e., both of the values are higher than 0.5, the model 

exhibits slow adaptation behaviour [13]. Therefore, the results seen in Fig.s 5 and 6 can be shown as an example of fast 

adaptation, whereas the results seen in Fig.s 8 and 9 can be shown as an example of slow adaptation. ∝= β = 0.5 can almost be 

regarded as a threshold value between the fast and the slow adaptations. For ∝= β = 0.5, the simulation result given in Figure 

7 shows an intermediate behavior between the fast and slow adaptations. However, it resembles more the slow adaptation 

behavior seen in Figures 8 and 9. 

 

 
 

Fig. 5. (a) The external current and the output voltage and (b) the external current and the recovery variable of the modified 

Nagumo circuit model for ∝= 𝛽 = 0.2 

 

 
 

Fig. 6. (a) The external current and the output voltage and (b) the external current and the recovery variable of the modified 

Nagumo circuit model for ∝= 𝛽 = 0.4 
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Fig. 7. (a) The external current and the output voltage and (b) the external current and the recovery variable of the modified 

Nagumo circuit model for ∝= 𝛽 = 0.5 

 

 
 

Fig. 8. (a) The external current and the output voltage and (b) the external current and the recovery variable of the modified 

Nagumo circuit model for ∝= 𝛽 = 0.6 

 

 

 
Fig. 9. (a) The external current and the output voltage and (b) the external current and the recovery variable of the modified 

Nagumo circuit model for ∝= 𝛽 = 0.8 

 

In Fig. 10, the variation in the output frequency of the model is given for the simulations seen in Fig.s 5-9. If the α and β 

parameters are selected higher than 0.5, slow adaptation can be seen in graphics shown in blue and red in Fig. 10.  If the α and β 

parameters are selected lower than 0.5, fast adaptation behaviour can be seen in graphics shown in purple and green in Fig. 10. 

Figure 11 shows the phase plane plot of the CFD-based FHN model. Since the phase relationship of v and w variables does not 

change in all cases (∝= 𝛽 = 0.2, 0.4, 0.5, 0.6, and 0.8), the phase plane plot shows the same behaviour. Since the model shows 

adaptation behaviour, the phase relationship between v and w parameters does not change for all ∝= 𝛽 values. 
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Fig. 10. The output frequency of the modified Nagumo circuit model for the various ∝= 𝛽 values (0.2, 0.4, 0.5 0.6, 0.8) 

 

 
 

Fig. 11. Phase plane plot of the modified Nagumo circuit model 

 

Figures 12 and 13 show the simulation results when of the ∝ and β parameters are not chosen as the same. When ∝ is chosen 

greater than β, the model’s behaviour is seen in Fig. 12. Fast adaptation behaviour is observed in this case. However, it can be 

seen that both the output signal and recovery variable signal have higher slopes in this case. The output voltage rises or falls 

down very sharply, i.e., gets higher slopes while w starts increasing or decreasing as shown in Fig. 12. Following the rise and 

the fall, the output voltage decreases or increases monotonously respectively. As a result, the output signal v has a higher slope 

at the rising and falling edges. When β is chosen greater than ∝, the model’s behaviour is seen in Fig. 13.  The peak voltage 

value of the output signal decreases with respect to time and becomes constant at the value of the reverse voltage source E. In 

this case, the output voltage v is dragged to the reverse voltage source E. 

 

 
 

Fig. 12. The external current and the output voltage and b) the external current and the recovery variable of the modified Nagumo 

circuit model for ∝=0.8 and β=0.2 
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Fig. 13. The external current and the output voltage and b) the external current and the recovery variable of the modified Nagumo 

circuit model for ∝=0.2 and β=0.8 

 

The recovery variable provides negative feedback to the variable v. Increases in w variable causes the variable v to weaken 

more in this model more than expected from the FHN model. As seen in Fig. 13, the output voltage signal (v) becomes constant 

at the value of the reverse voltage source E with the strengthened negative feedback effect of the recovery variable (w). This 

behaviour shown in Fig. 13 is incompatible with the all or nothing principle, which is known as a requirement of neuron 

electrophysiology. 

 

 

5. Conclusions 

 

In this study, a FHN model circuit, which possesses a CFD capacitor in parallel with an LTI capacitor and a CFD inductor in 

series with an LTI inductor, is proposed. The equivalent capacitor and equivalent inductor are time-dependent in this circuit. A 

method which reset at the beginning of each excitation is proposed in order to prevent time-dependent variation in the absence 

of excitation in the proposed model. The proposed model shows the adaptation behaviour of biological neuron constant 

stimulation. The speed of adaptation can be changed by varying the fractional-order degree. Thus, different adaptation behaviours 

can be modelled. In addition, the anomalies, which occur when the capacitor and inductor fractional degrees are selected 

differently are also shown and explained through simulations. 

It is a well-known fact that, in addition to adaptation, forgetting behaviour is also observed in biological neurons. 

Accordingly, it is expected that the effects of the first stimulation will be forgotten within a certain time period between two 

consecutive stimulations. In future studies, the model can be made more specific by adding forgetting behaviour.  
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