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Optimal design of digital low-pass filters using multiverse optimization 

 

Om Prakash Goswami1, Aasheesh Shukla2, Manish Kumar2, Anuja Bhargava2 

 
The designs of first- and second-order digital low-pass filters with infinite impulse response (IIR) are presented in this letter, 

utilizing a meta-heuristic optimization technique. Firstly, the analog transfer functions of the first and second- order filters are 

considered, followed by the application of an L1-norm-based multi-verse optimization algorithm to directly emulate their 

magnitude-frequency response in the digital domain. The obtained magnitude-frequency response shows superior matching 

with the analog counterpart for different cut-off frequencies of the first- and second-order filters, as well as varying quality 

factors for the second-order filter. In comparison to the filter’s magnitude-frequency response obtained through traditional 

bilinear transform and advanced operators, the proposed technique accurately manifests the analog magnitude-frequency 

response in the digital domain. 
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1 Introduction 

In signal processing, filtering is a widely used 

technique that modifies the input signal’s spectrum to 

produce an output signal with desired spectral qualities. 

Filters are widely accepted due to their adaptability using 

a programmable processor, precision in performance, 

multiplexing, data logging, thermal stability, and 

perfect reproducibility. Digital filters can be designed as 

either finite impulse response (FIR) or infinite impulse 

response (IIR). While FIR systems are stable and have 

phase linearity, IIR systems require less memory and 

have a reduced level of computational complexity while 

providing a sharp cut-off. As a result, IIR-based designs 

of digital filters are typically preferred [1]. 

In recent years, there has been extensive research on 

designing digital filters, which can be done either by 

designing directly in the digital domain or by replicating 

the analog domain response in the digital domain using 

analog-to-digital transforms. The latter approach is most 

widely used, with the bilinear transform being the most 

popular example, as it preserves stability and 

corresponding filter order [2]. However, the linearity of 

the bilinear transform is limited to the Laplace operator 

only up to 0.3π of the entire digital range, requiring 

oversampling [3-5]. Several other transforms have been 

developed using different interpolation, optimization, 

and fractional delays, such as Al-Alaoui’s interpolation 

between rectangular and trapezoidal rules for better 

 

 

magnitude approximation [6-8]. The use of fractional 

delay in place of unit delay, and the designs based on 

fractional interpolation have also been suggested as 

alternatives to the bilinear and Al-Alaoui transforms  

[9, 10]. Additionally, various designs have been deve-

loped using different optimization algorithms to extend 

the linearity region to accommodate a wide frequency 

band during transformation [11-14]. However, the use of 

bilinear and other transforms to convert the analog 

transfer function in the digital domain often leads to 

large-magnitude errors, particularly when the sampling 

frequency is relatively low. Therefore, this work 

proposes an alternative method to design digital filters 

directly in the digital domain using multi-verse 

optimization in L1-sense. The examined examples  

[1, 6, 9, 10] demonstrate that the proposed technique 

out-performs traditional transformations in matching the 

analog magnitude-frequency response in digital filter 

designing. 

The rest of the letter is organized as follows: Section 

2 deals with the problem formulation of first- and 

second-order digital filter design. Section 3 briefly 

describes the multi-verse optimization algorithm utilized 

for optimizing the transfer function’s coefficients. 

Section 4 discusses the obtained simulation results and 

comparisons. Section 5 provides the conclusion of the 

paper. 
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2 Problem formulation and design 

2.1 First-order filter design 

The generalized first-order low-pass filter transfer 

function in analog domain can be defined as 

𝐻𝑓𝑖𝑟𝑠𝑡(𝑠) =
𝜔𝑐

𝑠 + 𝜔𝑐
,                                             (1) 

where 𝑠 = 𝑗𝜔, and angular cut-off frequency 𝜔𝑐 =
2𝜋𝑓𝑐. The magnitude-frequency response of (1) for 

matching in the digital domain is [2] 

|𝐻𝑓𝑖𝑟𝑠𝑡(𝑗𝜔)| =
1

√1 + (
𝜔
𝜔𝑐

)
2

                            (2) 

which has a unity gain at DC, 1/√2 at the corresponding 

cut-off frequencies, and zero at infinity. For any cut-off 

frequency in (1), the operator ‘S’ can directly be 

approximated by the first-order digital transfer function 

as [15] 

𝑠 →
2

𝑇

𝑎0 + 𝑎1𝑧−1

𝑏0 + 𝑏1𝑧−1
                                             

Therefore, 

𝐻1(𝑧) = 𝐻𝑓𝑖𝑟𝑠𝑡(𝑠)
𝑠→

2
𝑇

𝑎0+𝑎1𝑧−1

𝑏0+𝑏1𝑧−1  
                           (3) 

Now, for any specific cut-off frequency, the 

coefficients a0, a1, b0, and b1 can be optimized. 

Correspondingly, the error objective function is defined 

as: 

‖𝐸1‖ = ∑|𝐻𝑓𝑖𝑟𝑠𝑡(𝑠) − 𝐻1(𝑧)𝑧=𝑒𝑗𝜔| ,             (4)

𝜔

 

where ‖∙‖ provides the norm of function. 

 

2.2 Second-order filter design 

The generalized second-order low-pass filter 

transfer function in analog domain with quality factor 

(Q) factor can be defined as [15] 

𝐻𝑠𝑒𝑐𝑜𝑛𝑑(𝑠) =
𝜔𝑐

2

𝑠2 +
𝑠𝜔𝑐

𝑄 + 𝜔𝑐
2

                            (5) 

while the magnitude-frequency response can be ex-
pressed as [15] 

|𝐻𝑠𝑒𝑐𝑜𝑛𝑑(𝑗𝜔)| =
𝜔𝑐

2

√(
𝜔𝜔𝑐

𝑄 )
2

+ (𝜔𝑐
2 − 𝜔2)2

    (6) 

 
In the case of a first-order low-pass filter, the gain is 

one at DC and decreases to zero at infinity. However, 

for a second-order filter, the gain reaches a maximum 

value of Q at the cut-off frequency. For Q factors 

greater than, 1/√2, a resonant peak forms at the cut-off, 

and the magnitude-frequency response is no longer 

monotonically decreasing. Due to the nature of the 

second-order low-pass filter, intermediary calculations 

may result in discontinuities, making more sophisticated 

measures necessary compared to the first-order case  

[15, 16]. Therefore, for a given cut-off frequency and Q 

factor, the coefficients a0, a1, b0, and b1 can be optimized. 

The error objective function can be expressed as 

‖𝐸2‖ = ∑|𝐻𝑠𝑒𝑐 𝑜𝑛𝑑(𝑠) − 𝐻2(𝑧)𝑧=𝑒𝑗𝜔|

𝜔

          (7) 

where 

𝐻2(𝑧) = 𝐻𝑠𝑒𝑐 𝑜𝑛𝑑(𝑠)
𝑠→

2
𝑇

𝑎0+𝑎1𝑧−1

𝑏0+𝑏1𝑧−1

                     (8) 

The reason of using error function in L1-sense is that 

it offers a smooth response with less overshoot and 

ripples at discontinuity points [17]. 

 

3 Description of L1-MVO optimization 

The multi-verse optimizing (MVO) algorithm is 

a nature-inspired stochastic population-based algorithm 

that utilizes the concept of many parallel universes. This 

algorithm relies on three main components, namely, 

wormholes, black holes, and white holes. White holes, 

produced by the big bang or the collision of universes, 

play a role in the expansion of the universes. In contrast, 

a black hole represents the antithesis of a white hole, 

conferring a strong gravitational pull that attracts 

everything, including light. Wormholes function as time-

space tunnels allowing travel within and between 

different universes. The inflation rates present in each 

universe also contribute to the expansion.  

A mathematical model is developed using these three 

ideas to evaluate local research, exploitation, and 

exploration. MVO utilizes wormholes to explore the 

search regions and employs black and white hole 

concepts to exploit the identified search region. Every 

solution and variable is interpreted as a universe and 

object in the search region, respectively. As a result, the 

fitness function directly correlates with the inflation rate 

[18-20]. 

The algorithm operates successfully by following 

the guidelines outlined below. 

• With rising inflation rates, white holes are more 

likely and while black holes are less likely to exist. 

• To get the possible best universe, the objects may 

move randomly regardless of the inflation rate. 

• Through white holes and black holes, the object often 

moves from a higher inflation rate to a lower inflation 

rate. 
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The optimization process is initiated by randomly 

generating a set of universes. In each iteration, objects 

are moved from higher inflation rates to lower ones 

through white holes and black holes. In addition, 

wormholes are used to randomly teleport objects to 

obtain the best universe. The updating process is based 

on the following equation [18]: 

𝑥𝑖
𝑗

= {
{

𝑥𝑗 + 𝑇𝐷𝑅 + 𝑃,    𝑖𝑓 𝑟3 < 0.5,

𝑥𝑗 − 𝑇𝐷𝑅 + 𝑃,    𝑖𝑓 𝑟3 ≥ 0.5,
,   𝑖𝑓 𝑟2 < 𝑊𝐸𝑃 

𝑥𝑅𝑊
𝑖 ,                                                  𝑖𝑓 𝑟2 ≥ 𝑊𝐸𝑃

 

(9) 

where 𝑃 = (𝑟4(𝑢𝑏𝑗 − 𝑙𝑏𝑗) + 𝑙𝑏𝑗) and xj represents the 

jth parameter of the best individual universe and 

𝑥𝑅𝑊
𝑖 is the jth element of a solution picked by the roulette 

wheel selection mechanism. lbj and ubj indicate the 

lower and upper bounds of jth variable, xj represents 

the jth parameter of ith universe with r2, r3, r4 being 

random numbers ranging from 0 to 1. TDR and WEP 

are traveling distance rate and wormhole existence 

probability and are defined as follows [18, 19] 

𝑊𝐸𝑃 =   𝑎 + 𝑡 (
𝑏 − 𝑎

𝑇
),                                     (10) 

where a, b, t are the minimum, maximum, and current 

iterations. T represents the maximum number of 

allowed iterations. 

𝑇𝐷𝑅 = 1 −
𝑡

1
𝑝

𝑇
1
𝑇

                                                    (11) 

where p indicates the exploitation accuracy [18]. The 

pseudocode is given in the Algorithm 1. 

 

 

 

 

Firstly, a collection of universes is generated ran-

domly as part of the optimization process. With each 

iteration, objects pass through white and black holes as 

they go from higher to lower inflation rates. Meanwhile, 

wormholes randomly transport stuff to obtain the best 

universe. For optimization control parameters, the 

number of universes is 50 for 200 iterations with upper 

and lower bounds restricted to 3 and –3, respectively. 

 

4 Simulation analysis and comparison with existing 

    techniques 

The simulations are conducted using an Intel(R) 

Core(TM) i5-7200U CPU processor (2.50 GHz) with 8 

GB RAM, Windows 10 operating system, and MATLAB 

(2017a) software. 

 

4.1 First-order filter design 

The simulations were conducted by optimizing the 

error function defined in (4) for various cut-off 

frequencies with a sampling frequency of fs=44.1 kHz. 

For a cut-off frequency of fc=10 kHz, the coefficients 

a0, a1, b0, and b1 were optimized and yielded the values 

of 2.6907, –2.67748, 0.54717, and 2.9074, respectively. 

Similarly, for another cut-off frequency of fc=20 kHz, 

the coefficients a0, a1, b0, and b1 were optimized and 

resulted in values – 0.63958, 0.63352, – 2.7921, and  

– 0.5068, respectively. The magnitude-frequency 

response of the obtained transfer function is shown in 

Fig. 1(a). Additionally, Fig. 1(a) illustrates the 

magnitude-frequency responses of the same filter 

obtained by different transforms. The bilinear 

transformation, which is widely used in filter design to 

transform the analog domain into the digital domain, has 

been used along with other transforms such as the  

Al-Alaoui transform [6], fractional bilinear transform 

(FBLT) [9], and the transform proposed by Goswami et 

al. [10] to approximate the filter’s analog magnitude-

frequency response. As shown in Fig. 1(a), the proposed 

technique exhibits better matching of the magnitude-

frequency response than the other existing methods. 

The absolute magnitude error (AME) plot in Fig. 1(b) 

indicates that the matching magnitude error of the 

proposed design remains less than 0.015 for the cut-off 

frequency 𝑓c=10 kHz and outperforms others. For 

cut-off frequency, 𝑓c=20 kHz, the AME plot in Figure 

1(c) also supports the fact that the proposed design 

performs better than the other techniques used for 

transformation. The enlisted sum of absolute magnitude 

error (SAME) comparison done in Tab. 1 further 

confirms the noteworthy improvement obtained by the 

proposed technique in approximating the analog 

magnitude-frequency response compared to others for 

both considered cut-off frequencies.  
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(a)  (b)  (c) 
     

Fig. 1. (a) Magnitude-frequency response of the first-order filter for different cut-off frequencies fc , (b) absolute 

magnitude error comparison of first-order filter for fc=10 kHz, and (c) absolute magnitude error comparison  

of the first-order filter for fc=20 kHz. 

 

 

 

Table 1. Statistical comparisons for first-order  

low-pass f ilter 

 

 

4.2 Second-order filter design 

The coefficients of (7) are optimized for two different 

values of quality factor Q, with the cut-off frequency set 

to 10 kHz for the second-order filter. The corresponding

coefficients a0, a1, a2, b0, b1, and b2 are obtained as 

0.8689, –0.42339, –1.8690, 0.51631, 2.2003 and 

1.83575, respectively, for Q=0.2. For Q=2, the 

optimum values of coefficients a0, a1, a2, b0, b1, and b2 

are obtained as –0.8637, –0.13968, 0.99031, –0.6344,  

–2.36533 and –0.80692, respectively. The magnitude-

frequency response obtained by the proposed technique 

with the ideal analog response for both values of Q 

is shown in Fig. 2(a), which closely matches the 

analog counterpart in the region of interest. After 

applying the other transforms to the filter for Q=0.2 and 

Q=2, the absolute magnitude error plots are shown in 

Figs. 2(b) and (c), respectively. The magnitude error 

plots obtained from the proposed technique are 

restricted up to 0.0025 for Q=0.2, and 0.015 for Q=2, 

which are the least among others for the respective value 

of Q. The statistical comparison in Tab. 2 also supports 

the fact of having better magnitude-frequency response 

matching provided by the proposed design.  

 

 

 

 

 

 

(a)  (b)  (c) 
     

Fig. 2. (a) Magnitude-frequency response of the second-order filter for different values of Q and  

fc=10 kHz, (b) absolute magnitude error comparison of second-order filter for Q=0.2 and fc=10 kHz, (c) absolute 

magnitude error comparison of second-order filter for Q=2 and fc=10 kHz. 
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Table 2. Statistical comparisons for second-order 

low-pass filter for fc=10 kHz 

 

 

5 Conclusion 

In this letter, a technique has been presented for 

designing first- and second-order digital filters using 

the multi-verse optimization algorithm. The optimi-

zation process involved optimizing the coefficients of 

the generalized analog transfer functions for different 

cut-off frequencies directly in the digital domain, based 

on the L1-norm error objective function. The resulting 

magnitude-frequency response of the transfer function 

accurately matched the analog response, with the least 

magnitude error. Hence, optimizing the filter 

coefficients directly in the digital domain can be 

considered an alternative approach to traditional 

methods that utilize analog to digital transforms in filter 

designing. 
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