
Journal of Electrical Engineering, Vol. 75, No. 4, 2024, pp. 304-316

sciendo

PAPERS___

1 Faculty of Electrical Engineering and Information Technology at the Slovak University of Technology,

Ilkovičova 3, 841 04 Bratislava 1, Slovak Republic
2 Photoneo s.r.o., Plynárenská 6, 821 09 Bratislava, Slovak Republic

eduard.mraz@stuba.sk, trizuljak@photoneo.com, matej.rajchl@stuba.sk, martin.sedlacek@stuba.sk,

filip.stec@stuba.sk, jaromir.stanko@stuba.sk, jozef.rodina@stuba.sk

https://doi.org/10.2478/jee-2024-0037, Print (till 2015) ISSN 1335-3632, On-line ISSN 1339-309X

© This is an open access article licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives License

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Multi-sensor fusion for robust indoor localization

of industrial UAVs using particle filter

Eduard Mráz1, Adam Trizuljak2, Matej Rajchl1, Martin Sedláček1,

Filip Štec1, Jaromír Stanko1, Jozef Rodina1

Robotic platforms including Unmanned Aerial Vehicles (UAVs) require an accurate and reliable source of position information,

especially in indoor environments where GNSS cannot be used. This is typically accomplished by using multiple independent

position sensors. This paper presents a UAV position estimation mechanism based on a particle filter, that combines

information from visual odometry cameras and visual detection of fiducial markers. The article proposes very compact,

lightweight and robust method for indoor localization, that can run with high frequency on the UAV’s onboard computer. The

filter is implemented such that it can seamlessly handle sensor failures and disconnections. Moreover, the filter can be extended

to include inputs from additional sensors. The implemented approach is validated on data from real-life UAV test flights, where

average position error under 0.4 m was achieved.

Keywords: UAV, UAS, sensor fusion, particle filter, localization

1 Introduction

One of the fundamental challenges in robotics is to

determine the position of the robot within the

environment. This is a significant task for mobile robots,

especially among flying robots (unmanned aerial

vehicles – UAV, drones) in industrial applications. In

these applications, autonomous behaviour helps to speed

up various processes, but it also places very high

requirements on the UAV in terms of robustness,

reliability and operational safety. It is crucial to estimate

the pose of the UAV continuously, because discrete

behaviour (such as sudden position jumps) can cause

system instability. This can cause the UAV to crash,

which poses a risk to the operating personnel and can

lead to damage to the UAV or the operating

environment. Moreover, it is desirable to utilize multiple

independent sources of position estimation in order to

increase the accuracy of localization, as well as to

provide redundancy in the case of failure of some of the

sensors [1].

The required accuracy of the system usually depends

on many factors, such as what type of indoor space is

required for the UAV to navigate. How many and what

type of obstacles are in this space and various other

factors. Therefore, it is difficult to set up general rules

for the required accuracy or performance.

In this article, warehouse inventory is simulated. This

is the environment where all the tests take place and

where the whole system was developed. Thus, it is the

main application of proposed system, but the system is

not limited to it. Warehouse inventory is a perfect task

to be done by an UAV [2] because it moves vertically

with more ease than humans. However, it might be

difficult to achieve high repeatability with such a system.

High repeatability in this case means minimizing

possibility of failures and accidents. Otherwise, the

system would not be considered reliable.

There are multiple requirements that need to be

satisfied with such applications for UAV’s. Since the

UAV performs flights in 3 dimensions, the localization

system needs to provide a 3D pose estimate. The pose

estimate must be accurate and must be provided in real-

time, so that it can be used by the UAV navigation

system for real-time position control. It is intended to use

the system in visually well-structured industrial

environments – warehouses, industrial halls etc. Many

solutions such as [3] and [4] rely on a pre-constructed

map. Every solution must use some type of map, unless

the facility is equipped with very accurate indoor

positioning system such as VICON [5]. In our

application, the mapping problem is aided by using

fiducial markers positioned at known locations

mailto:jozef.rodina@stuba.sk

Journal of Electrical Engineering, Vol. 75, No. 4, 2024 305

throughout the environment. This process is expected to

require only a one-time effort during installation, when

the positions of markers would be accurately measured

by standard tools like laser measuring tool.

Using multiple sensors requires the use of a fusion

mechanism to produce a combined state estimate. This

paper proposes a solution in the form of a particle filter

(PF). PF is used to fuse multiple position estimation

sources into one final, robust and reliable estimate of a

UAV’s pose. PF allows the fusion of multiple

sensors/methods with various qualities, in this case

position estimates from two Intel RealSense T265 visual

odometry cameras, and position estimates from visual

detections of fiducial markers. The core idea is to

combine the real-time visual odometry measurements,

which can exhibit drift over time, with accurate absolute

position information from detections of fiducial

markers, which are sparsely positioned in the operating

environment. The novelty of this approach relies on

using two Intel T265 cameras. To this date, authors are

not aware of any localization system, which was

designed specifically to fuse two Intel T265 cameras for

one final position estimate. Also, in the analysed sensor-

fusion articles, there is no focus on sensor disconnection

or malfunction. On the other hand, our work focuses on

solving the sensor disconnection/malfunction scenarios,

which explicitly emphasizes higher level of robustness.

Another advantage of our proposed approach is that it

can use ArUco markers, but the system is also fully

usable without them.

The implemented filter is intended to be used as the

main real-time position estimator for a UAV in indoor

industrial applications. The implementation of the

system allows it to run on a small form factor on-board

computer, which also encourages the miniaturization of

the UAV itself. The price of the sensors and hardware

used in this work is a fraction of the price compared to

the works analyzed in the Related work section. The

final cost is often omitted in research papers, but it is

proven to play an important role in industrial

applications, such as warehouse inventories [2].

2 Related work

The interest to develop a fully autonomous UAV is

obvious in the robotic community. Numerous systems

rely on SLAM (simultaneous localization and mapping)

methods for localization, such as ORB-SLAM [6],

RTAB-MAP [4] and SOFT-SLAM [7]. SLAM methods

solve a problem, where no map exists prior to the

localization process, so the map is being continually

constructed during the simultaneous calculation of the

robot's position. The output from SLAM methods can

then be used as a localization source for the robot.

Notably, SLAM algorithms tend to be computationally

expensive, which can prohibit their use on platforms

with limited computational resources.

In response to this issue, several devices have been

introduced to the market in the recent years that present

a more integrated position estimation solution. A prime

example is the Intel RealSense T265 [8]. It includes

a stereo camera pair coupled with an inertial measure-

ment unit (IMU), and the data is processed by an

embedded application-specific processor that executes a

highly optimized visual-inertial odometry algorithm.

Thanks to that the device has a low power consumption,

low computational requirements and is easy to use and

integrate into robotic platforms. However, its proprietary

visual odometry algorithm may suffer from drift and

occasional discontinuities in pose estimation.

A common approach to robot localization is Monte

Carlo Localization (MCL). It utilizes the particle filter

technique, which uses a large set of randomly sampled

weighted particles to represent a posterior distribution of

the possible system states given the current sensor

observations and prior state probabilities. Thus, the

particles (samples) are concentrated in the area of high

probability [9]. This is more efficient than the Markov

localization algorithm, which maintains a probability

distribution over the entire state space [9]. Another

advantage of the PF is that it can represent even highly

non-linear, non-Gaussian systems with almost arbitrary

process and sensor models [9-11]. In contrast, the

Kalman filter (KF), which is another popular approach

to localization and sensor fusion, relies on a linear

system model.

Notable examples of popular PF-based localization

systems are AMCL [12] and AMCL-3D [3], that can be

used to localize a robot in a known environment map.

AMCL stands for Adaptive Monte Carlo Localization.

In principle, Monte Carlo mechanism is used to fuse

multiple sources (sensors) to produce one output - robot

position estimate in GNSS denied environments using

particle filtering principles. In the case of AMCL, a scan

from a 2D laser sensor is aligned with a known 2D map

of the environment, which is used for position estimation

in 2D. AMCL-3D extends this approach into three

dimensions. It uses an RGB-D sensor to match a point

cloud with a previously constructed 3D map of the

environment to estimate the robot's position in 3D. As an

addition, AMCL-3D uses stationary beacon (such as

UWB radio) measurements to satisfy robustness and

improve accuracy of the system.

A disadvantage of PF is that depending on the model

complexity and size of the state space, it may require

a very large number of particles to achieve accurate

results [13], which in turn makes it computationally

expensive. However, the weight of each particle can be

computed independently of other particles, which means

that these computations can be highly parallelized. Thus,

modern GPU acceleration techniques can be used to

306 Eduard Mráz et al.: Multi-sensor fusion for robust indoor localization of industrial UAVs using particle filter

dramatically improve filter performance [14]. As far as

sensor-fusion methods are concerned, there were 4

recent articles analysed [15-18].

The work [18] contains a standard approach to the

fusion of several sensors. It achieves interesting results,

but also provides several reasons for the existence of the

system proposed in this article. The work deals with the

issue of real-time UAV state estimation in various

environments using the Extended Kalman Filter (EKF)

algorithm. EKF is used for the fusion of data from

several heterogeneous sensors. These sensors include

IMU, magnetometer, barometer, GNSS receiver, optical

flow sensor, LiDAR and RGB-D camera. Interestingly,

the work presents a hybrid architecture of multi-sensor

data fusion (MSDF), which combines local program

nodes for primary data fusion and a secondary program

node for global fusion using the EKF algorithm. The

accuracy in the results reached an error of 10 cm and less

in the position and ±3° in the heading of the UAV.

Although the system brings high accuracy, the use of

expensive LiDAR, the high weight of the drone (8.5 kg)

and the dependence on a standard PC represent

significant disadvantages. These sensors cost thousands

of euros. In addition, the work uses a full-fledged Intel

i5 series processor. Nevertheless, the estimate ran with

a frequency of only 10 Hz.

The paper [17] presents an adaptive and robust sensor

fusion approach for indoor UAV localization. The main

goal is to improve the estimation of the state (position)

of the UAV using the Moving Horizon Estimator (MHE)

algorithm in combination with ArUco markers. This

approach uses Gaussian Mixture Models (GMMs) to

model sensor uncertainty, thereby increasing locali-

zation accuracy. The system was tested and compared

with the Vicon reference system. In these tests, it

achieves error of 6 cm and less. The problems arise at

several points. For example, several ArUco markers are

used to simulate several sensors. However, these

markers are captured by only one camera – that is, one

sensor. This pre-empts the use of heterogeneous sensors,

or at least does not verify the possibility of their use.

Since ArUco markers represent the only estimate of the

system's position, it is a condition that they are always in

the camera's sight. Such a restriction markedly limits the

range of spaces where such localization may take place.

The work [15] deals with data fusion using EKF. The

work presents a system of visual-inertial odometry

(VIO) based on AprilTag visual markers and data from

the IMU. Proposed system allows for a high density of

markers, which minimizes the loss of information at

higher UAV speeds. The dense distribution of markers

ensures that even at higher speeds, several markers are

always within range, thus increasing the reliability of

localization. The experimental results show that the

average localization error is lower than 11 cm. The plus

point is that the system has been verified on two different

UAV platforms (quadrotor and hexrotor) in different

flight conditions. The results show good localization

consistency, indicating that the system is adaptable to

different types of UAVs and to different flight scenarios.

The problem is the absolute dependence on visual

markers. Additionally, these markers were placed on the

ground, which may be unacceptable in some industrial

environments. In addition, the marker map proposed in

the article occupies a large area.

The article [16] deals with the problem of locating

UAVs indoors, where GPS and magnetometer data are

unavailable or unreliable. The proposed solution uses a

variation of the EKF algorithm - error state extended

Kalman filter (ES-EKF) for sensor fusion. ES-EKF aims

for accurate and robust position and orientation

estimations by exploiting the linear dynamics of the

error state to optimally predict and update the state error

covariance. Simply put, this more advanced version of

the EKF additionally includes individual sensor errors in

the prediction and update steps. The authors declare that

in this way it is ensured that only measurements with a

smaller error are included in the fusion. The article

presents a system for the fusion of a relatively large

number of heterogeneous sensors and location sources:

the Ultra-wideband (UWB) Pozyx system, visual

odometry from the Intel RealSense T265 camera and the

SLAM algorithm from the LiDAR sensor. The limitation

for the LiDAR used is the same as for the work [18].

UWB limits system deployment due to the need to

deploy active electronic devices across an industrial

space.

Analysing strict sensor fusion methods confirms

recent scientific efforts to provide robust and accurate

solution for indoor localization. As shown in analysis of

related work, many of these efforts provide these

qualities. However, it has been proven that these efforts

are often not price effective, or it is not possible to

deploy them in industrial environments due to the

aforementioned limitations. The system proposed in this

article aims to solve the problems pointed out in the

analysis.

The rest of this paper is structured as follows. First,

section 3 gives an overview of the utilized UAV

platform, describing the available sensors and their data

outputs. Next, section 4 details the implementation of the

particle filter fusion mechanism, including the pre-

processing of sensor data, particle weight update,

resampling and state estimation, as well as sensor failure

handling. The implemented filter is then evaluated in the

section 5 using data from real-life flight tests.

Journal of Electrical Engineering, Vol. 75, No. 4, 2024 307

3 Platform description

Development and testing were carried out on the

Discovery quad-rotor UAV developed by Airvolute

s.r.o. It is a modular robotic UAV solution intended for

various industrial applications such as warehouse

inventories. Thanks to its modular design, it is also

appropriate for educational, development, and testing

purposes. It is powered by the NVIDIA Jetson Xavier

NX compute module [19] with a 6-core ARM CPU and

a GPU with 384 CUDA cores. This compute module

offers large opportunities for the use of deep learning

and GPU-accelerated parallel algorithms. The software

stack of this platform is based on the Robot Operating

System (ROS) and allows for quick deployment of user

applications. Although the platform allows to use any

ROS version compatible with OS Ubuntu 20.04 LTS, the

algorithms described in this article are implemented on

ROS1 Noetic version.

The Discovery UAV is equipped with multiple

redundant sensors to increase robustness in case of

hardware or software failure. The system obtains raw

position estimates using two independent Intel

RealSense T265 visual odometry cameras and pose

estimation based on ArUco fiducial markers detection.

Additionally, the UAV carries an Intel RealSense D455

depth and RGB camera and a lidar sensor that measures

the height above ground. These sensors are also used for

reactive navigation in the environment. The following

subsections describe the on-board sensors and their data

outputs, that are relevant for this work.

Fig. 1. The Airvolute Discovery UAV used to perform

the flight tests in this work

3.1 Flight controller

The UAV is controlled by The Cube autopilot

module [20] with a modified version of the Ardupilot

firmware. Ardupilot runs the complete control loop

including trajectory tracking and position, velocity and

angular rate PID controllers. The firmware was modified

to publish the target velocity signal

𝐮B = [𝐯 B 𝜔𝜓]
T,

which consists of the target linear velocity vector

vB = [vx vy vz]T in the body frame B of the UAV and

a target yaw rate 𝜔𝜓 .

3.2 Visual odometry

The Intel RealSense T265 [8] is a camera which is

able to compute visual-inertial odometry based on visual

feature tracking and a built-in IMU. It features a stereo

fisheye camera pair, which is used for feature detection.

The camera outputs a 200 Hz stream with estimated

position vector 𝐩O
W = [𝑝𝑥 𝑝𝑦 𝑝𝑧]

T
, orientation quarter-

nion 𝐪O
W = [𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤]

T
, linear velocity 𝐯O =

[𝑣𝑥𝑣𝑦𝑣𝑧]
T

 and angular velocity 𝛚O = [ω𝑥 ω𝑦 ω𝑧]
T

. All

quantities are estimated relative to a gravity-aligned

global frame W, with its origin and initial heading being

initialized to zero upon camera startup. Importantly, as

with any visual odometry algorithm, the T265 pose

estimate is subject to drift and it may also exhibit

discontinuities.

The T265 camera uses a proprietary visual odometry

algorithm, which does not directly provide covariance

matrices for the pose estimates. Instead, a four-level

estimate confidence value 𝑐 ∈ { 0,1,2,3 } is provided,

where 0 indicates low confidence (i.e., bad tracking

quality) and 3 indicates high confidence. This value is

therefore used by the realsense-ros package [21] to

compute an “approximate” odometry covariance value

𝜎O = 𝜎0 × 103−𝑐

where 𝜎0 is a baseline covariance parameter, typically

set to 0.01 m.

In our platform, two T265 sensors are used with the

goal of increasing system robustness. One sensor is

placed in the front of the drone and another one on the

back side, see Fig. 2. This not only helps with making

hardware redundancy possible but also each camera can

Fig. 2. Sensor placement of Airvolute Discovery

UAV

308 Eduard Mráz et al.: Multi-sensor fusion for robust indoor localization of industrial UAVs using particle filter

see different parts of the environment. This can help with

visibility issues, e.g., when one camera is partially

obstructed, blinded by over-exposure or when it faces

a low-texture environment. In such cases the estimate

confidence of this camera is decreased, but the estimate

from the other camera can still be used. In the rest of this

paper, measurements from the front and back camera

will be denoted by subscripts F and B, and the respective

world frames will be denoted F and B.

3.3 Localization with visual markers

The T265 cameras estimate their pose relative to their

initial position, however the transformations between

their respective reference frames and the global frame of

the environment are initially unknown. To address this

problem, multiple ArUco visual markers [22, 23] are

placed throughout the environment at known locations

along the expected flight trajectory of the UAV.

Figure 3 illustrates the coordinate frames used by the

system. W stands for World frame, M stands for Marker

frame and U stands for UAV frame. Ultimately, the

position of the UAV in the World frame needs to be

determined. Orientation of the M frame is identical to the

W frame. The transform of a single marker in the world

frame 𝐓M
W is set by placing the marker on well measured

positions in space where localization takes place. This

transform is assumed to be constant and since the

position of the marker in the global frame is also known

this makes the process known correspondence problem.

Using the known marker positions, it is possible to find

the transform (position and orientation) 𝐓U
W between

world and the UAV usign the 𝐓U
M (UAV to marker)

transform. This transform is determined by a camera

pose estimation process based on ArUco markers

described in [24]. Whenever a marker is detected by an

on-board camera, this method is used to estimate the

position and rotation (heading) of the UAV with respect

to the world frame W, defined by the vector 𝐩A
W =

[𝑝𝑥 𝑝𝑦𝑝𝑧]
T

 and the quaternion 𝐪A
W = [𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤]

T
,

which is then converted to Euler angles representation to

obtain the global heading 𝜓A
W. The covariance of this

detection is 𝜎A.

One marker is positioned such that it is in view of the

UAV immediately after takeoff. Position estimate

obtained from the initial (starting) marker is only

accepted, when it is considered stable. Stability is

achieved when the variance of pose estimate drops

below a specific threshold [24]. This initial detection is

then used to obtain the initial position of the UAV 𝐩A0
W .

The initial rotation is set to 𝜓A0
W = 0.

4 Particle filter

Particle filter is a sequential Monte Carlo method that

uses a large number of weighted particles to statistically

represent possible system states. In general, a particle

filter works by first propagating the particle states using

a system model and the current control command.

Afterwards, all particles are weighted based on how well

they correspond with the current sensor measurements.

The state estimate is then computed as a weighted mean

of all particles. Lastly, the set of particles is resampled

according to their calculated weights.

The decision to use a particle filter as the sensor

fusion mechanism was based on several factors. Firstly,

the RealSense T265 camera does not provide a true

covariance value, as discussed in section 3.2. This, when

combined with various non-linearities of the UAV

system, would make it difficult to use as an input to

a more traditional Kalman filter, which relies on a linear

system model and accurate covariance values. While the

Extended and Unscented Kalman filter techniques can

be applied to non-linear systems, the particle filter can

achieve better performance [10]. Moreover, the particle

filter is able to represent arbitrary, non-analytical

distributions [11]. A disadvantage is the increased

computational load due to the high number of particles

and the associated weight update calculations, however

these could be massively parallelized using GPU

acceleration [14], leveraging the power of the on-board

Jetson Xavier NX processor. The current version of the

particle filter presented in this paper is implemented in

the Python language and uses only the CPU for

calculations, however it still achieves sufficient real-

time performance.

In this work, the goal of the particle filter is to

estimate the state of the UAV

𝐱̂ = [𝐩̂ 𝜓̂]T

consisting of the global 3D position vector

𝐩̂ = [𝑝𝑥̂ 𝑝𝑦̂ 𝑝𝑧̂]
T

 and global heading 𝜓̂. In the algo-

rithm, the estimation of roll and pitch angles was omitted

because the UAV primarily follows planar trajectories,

and the onboard autopilot system, Ardupilot, already

delivers sufficiently accurate estimates for these angles.

Heading is however more complicated, since indoor use

of compass can prove difficult, requiring calibration for

each of the different industrial environments which can

change dramatically over the course of flight (e.g., flying

from open space to an aisle between the racks).

Therefore, to keep the system robust heading needs to be

estimated using different approach and so it is estimated

as one of the states of the PF. Our particle filter is

tailored towards high-level position control and

trajectory tracking, where estimation of global heading

is critical.

Journal of Electrical Engineering, Vol. 75, No. 4, 2024 309

Fig. 3. Basic coordinate frames of the proposed PF

localization system.

At a given time, step i, the i-th particle contains

a position vector 𝐩𝑡
(𝑖)

 and heading 𝜓𝑡
(𝑖)

:

𝐱𝑡
(𝑖)

= [𝐩𝑡
(𝑖)

 𝜓𝑡
(𝑖)

]
T

The state of the UAV is statistically represented by a set

of N weighted particles

𝐒𝑡 = {𝐱𝑡
(𝑖)

; 𝑤𝑡
(𝑖)

}, 𝑖 ∈ 1. . . 𝑁,

where the individual particles 𝐱𝑡
(𝑖)

 are random samples

from the state space. The weight of the i-th particle

𝑤𝑡
(𝑖)

∈ (0; 1) describes the posterior probability that this

particle accurately represents the true system state given

its prior probability and current sensor inputs. The

implemented particle filter algorithm is summarized in

Algorithm 1. The following sub-sections provide

detailed description of each step of the computation.

Algorithm 1 Particle filter summary

1: Input: Number of particles N, Initial particle

position 𝐱0 and variance 𝜎0

2: Initialize particle set 𝐒 = {𝐱(𝑖); 𝑤(𝑖)}, 𝑖 ∈

1. . 𝑁, 𝐱(𝑖) ∼ N(𝐱0, 𝜎0), 𝑤(𝑖) = 1/𝑁

3: loop

4: Input: Pose estimates 𝐩F, 𝐩B, 𝐩A in World

frame, Velocity command u

5: for i = 1 to N do » Prediction

6: Sample process noise 𝐮∗ ∼ N(0, 𝜎u)

7: 𝐱(𝑖) ← 𝐱(𝑖) + (𝐮 + 𝐮∗)d𝑡 » Move i-th

particle by velocity command + noise

8: end for

9: for i = 1 to N do » Selective weight update

10: if 𝐩F, 𝜓F is available then » Update w.r.t.

front odometry estimate

11: 𝑤(𝑖) ← 𝑤(𝑖) ∗ 𝑊(𝐩F, 𝜓F, 𝐱(𝑖))

12: end if

13: if 𝐩B, 𝜓B are available » Update w.r.t. back

odometry estimate

14: 𝑤(𝑖) ← 𝑤(𝑖) ∗ 𝑊(𝐩B, 𝜓B, 𝐱(𝑖))

15: end if

16: if 𝐩A, 𝜓A are available » Update w.r.t.

ArUco pose estimate

17: 𝑤(𝑖) ← 𝑤(𝑖) ∗ 𝑊(𝐩A, 𝜓A, 𝐱(𝑖))

18: end if

19: end for

20: if 𝑁𝑒𝑓𝑓 < 𝑁‐ th

21: Resample St given 𝑤(𝑖)

22: end if

23: Normalize weights s. t. ∑ 𝑤(𝑖) = 1

24: 𝐱̂ ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (𝐒𝑡) » Compute state

estimate

25: end loop

4.1 Input processing

The acquired sensor data described in section 3 needs

to be pre-processed before it can be used by the particle

filter. This consists mainly of transforming all measure-

ments into a common global frame and is detailed in the

following subsections. This processing occurs before

every particle filter update step, i.e., at 20 Hz.

The desired velocity command 𝐮B = [𝐯B ω𝜓]
T
 in the

UAV body frame B is published by the flight controller

at 20 Hz. This velocity must first be transformed into the

world frame W using the quaternion 𝐪A from the ArUco

marker detection:

𝐮W = [𝐯W ω𝜓]
T

= [𝐪A
W 𝐯B 𝐪A

W−1
ω𝜓]

T
,

where 𝐪A
W−1

= [−𝑞𝑥 − 𝑞𝑦 − 𝑞𝑧 𝑞𝑤]
T

 represents the

quaternion conjugation operation. This becomes the

control input that is used to propagate the particles in the

filter predict step. To keep the nomenclature concise, the

control input in the global frame, the control input in the

global frame will be further labelled as u, omitting the

World frame subscript.

The front and back visual odometry cameras provide

estimates of odometry poses, consisting of position

vectors 𝐩F, 𝐩B and orientations 𝜓F, 𝜓B. These

measurements are transformed into the world frame

using the world frame estimate from ArUco, and static

transforms that describe the position of the sensor with

respect to the center of gravity of the UAV. For instance,

by placing an odometry sensor on the back of the UAV,

there is a static transform representing X, Y, Z position

offset and yaw rotation offset by 180 degrees.

310 Eduard Mráz et al.: Multi-sensor fusion for robust indoor localization of industrial UAVs using particle filter

In the first stage, it is necessary to rotate all those

coordinate frames to match the global orientation of the

UAV. Translating is not necessary, because only

position increments are used instead of the absolute

position estimate. For this purpose, the initial position

and orientation – 𝐩A0
W and 𝜓A0

W respectively – detected

from initial ArUco camera pose estimate is used. So, to

transform odometry measurements 𝐩F, 𝐩B, 𝜓F, 𝜓B to the

global frame, rotation transforms 𝐑F
W and 𝐑B

W need to be

applied to both position vectors 𝐩F, 𝐩B and orientations

𝜓F, 𝜓B. These transformations are obtained by

multiplying the odometry yaw measurements with the

initial ArUco yaw transform 𝜓A0
W

𝐑F
W = 𝜓A0

W 𝜓F
−1,

𝐑B
W = 𝜓A0

W 𝜓B
−1.

For the system to become immune to sensor

malfunction, the PF process cannot hang on sensor

disconnection/malfunction event. For this reason, a fail-

safe mechanism was implemented, which periodically

checks the newest received message from every sensor.

If the message is older than a specified threshold, the

source is discarded from the state estimation process.

The threshold value depends on the frequency that the

sensor is working with.

From the particle filter perspective this means that the

sensor data from this sensor will not have its’ weight

function evaluated and the specific step will be skipped.

This is one of the advantages of using particle filter since

not all of the weighting functions need to be evaluated at

each iteration of the algorithm. This helps to deal with

situations in which the measurements do not come

synchronized but appear at different intervals or

different rates.

Another condition that needs to be handled is the

reconnection of the sensor in the middle of the process.

The problem is that after reconnecting, the visual

odometry estimate usually starts in its own local frame

from zero position. After it has been detected that the

sensor is successfully working again, the transform from

local sensor frame to the world frame needs to be

applied. Again, only rotation transform is needed,

because only position and heading increments are used,

so translation is not needed. The heading of the last PF

pose estimate is used as a world frame orientation in this

case. Reconnect rotation transform is set by computing

a difference between the PF heading (yaw angle) 𝜓̂ and

the current heading of the odometry sensor 𝜓 – which

was reset after reconnection. Calculating reconnect

rotation transform 𝐑R is symbolically denoted by using

a function QuaternionFromEuler which converts single

euler angles (roll, pitch, yaw) to one complete

quaternion.

𝐑R = QuaternionFromEuler(0,0, 𝜓̂ − 𝜓)

Finally, after the reconnection event, the odometry

position estimate is transformed to the world frame as

follows:

𝐩S
W = 𝐩𝐑W𝐑R

The last transform consists of rotating a static trans-

lation vector 𝐭S, which represents translation of the

odometry (or any other) sensor frame with respect to

UAV base frame. Illustration of configuration of the

UAV used in this work is displayed in Fig. 2. To

transform 𝐭S into the world frame, it needs to be in the

world frame of the sensor's position estimate 𝐩W. Define

𝐑C
W as a rotation holding current yaw estimate 𝜓 of

a specific sensor. Furthermore, it needs to include a static

rotation 𝐑S of the sensor with respect to the UAV base

frame. It should be noted that 𝐭S and 𝐑S depend on the

physical sensor placement on the UAV and need to be

measured prior to flight. Final transform of 𝐭S into

a world frame is then defined as

𝐭W = 𝐭S 𝐑C
W 𝐑S

Then, it is possible to add this vector to the current

position estimate coordinates of a specific sensor

𝐩W = 𝐩S(𝑥,𝑦,𝑧)
W + 𝐭W

Calculating odometry increments is done by calculating

the distance between two consecutive measurements

from T265 visual odometry sensors

△ 𝐩 = 𝐩𝑡
W − 𝐩𝑡−1

W ,

△ 𝜓 = atan2(sin(𝜓𝑡 − 𝜓𝑡−1), cos(𝜓𝑡 − 𝜓𝑡−1))

Odometry increments are then used to obtain an

estimated global position and heading from the sensor

𝐩𝑡+1̂ = 𝐩𝑡̂ +△ 𝐩,

𝜓𝑡+1̂ = (𝜓𝑡̂ +△ 𝜓) mod  2𝜋

These calculations are applied to both the front and

back T265 measurements, which produces the estimated

global position from the front camera 𝐩F̂, 𝜓F̂ and back

camera 𝐩B̂, 𝜓B̂. This method is specific for sensors used

with the proposed PF mechanism. The process of

increment calculation may vary depending on different

hardware.

The reason behind using odometry increments

instead of absolute position estimates from odometry

sensors is to avoid biasing the particle filter with

accumulated odometry error. Error accumulation is

fairly common in computing visual odometry. Currently

used odometry sensors – T265 cameras – are closed

systems which perform optimization to some extent. To

follow the proposed PF architecture, it is desired to use

the simplest form of odometry measurements, in other

words – most unprocessed data which is possible to

obtain. Then, after obtaining such data, state estimation

optimization is performed inside the PF algorithm.

Journal of Electrical Engineering, Vol. 75, No. 4, 2024 311

To keep the notation clear, this superscript W will be

omitted in the rest of this paper, thus p will denote

a position measurement already transformed into the

World frame.

4.2 Filter initialization

After takeoff, the filter waits until the initial estimate

of ArUco position 𝒑𝐴0 and heading 𝜓𝐴0 is available. The

positions and rotations of all particles 𝑖 ∈ 1 … 𝑁 are then

initialized by generating samples from normal

distributions that are centered about this initial position

estimate:

𝒑(𝒊) ∼ N (𝒑𝐴0, 𝜎𝐴0)

𝜓(𝑖) ∼ N (𝜓𝐴0, 𝜎𝜓𝐴0)

The covariance parameters 𝜎A0 and 𝜎𝜓0 control the

initial spread of the particles, which expresses the

uncertainty of the initial pose estimate. Since the initial

position of the UAV within the environment is well

known, relatively (w.r.t. to the size of the environment)

low values σ𝐴0 = 1.0 m and σψ0 = π/4 were used. All

particles are assigned a uniform weight 𝑤𝑡
(𝑖)

= 1/𝑁.

4.3 Prediction

Once the filter is initialized, its update process is

executed upon every received velocity command 𝐮 =

[𝐯 ω𝜓]
T
, which occurs at 20 Hz. At a given time step t,

the position of every particle 𝐱𝑡
(𝑖)

= [𝐩𝑡
(𝑖)

 𝜓𝑡
(𝑖)

]
T

∈ 𝐒𝑡 is

predicted using a linear motion model

𝐩𝑡+1 = 𝐩𝑡 + (𝐯 + 𝐯∗) d𝑡

where 𝐯∗ ∼ N(0, 𝜎up) is a sample of the Gaussian

process noise with covariance 𝜎up, which describes the

uncertainty in tracking of the desired velocity signal. The

heading angle prediction follows a similar principle

𝜓𝑡+1 = (𝜓𝑡 + (𝜔𝜓 + 𝜔𝜓
∗) d𝑡) mod 2𝜋

where the sample of the Gaussian process noise ω𝜓
∗ ∼

N(0, 𝜎uψ) with covariance 𝜎uψ models the uncertainty

of yaw rate tracking. The modulo operation ensures that

the predicted angle remains within the interval 〈0; 2𝜋〉.

4.4 Selective weight update

The next step is to update the weight of each particle

with respect to multiple measurement sources. Through

the incremental calculation described in section 4.1, the

front and back T265 cameras provide the estimated

positions 𝐩F̂, 𝐩B̂ and headings 𝜓F̂, 𝜓B̂ with

corresponding covariances 𝜎F̂, 𝜎B̂. If an ArUco marker is

currently being detected, it provides the estimated pose

𝐩Â, heading 𝜓Â and covariance 𝜎Â. The idea is to

selectively incorporate these measurements only when

they are available or reliable.

We define a function W that computes the likelihood

of a particle 𝐱𝑡
(𝑖)

= [𝐩𝑡
(𝑖)

 𝜓𝑡
(𝑖)

]
T

 based on the position

observation p with covariance 𝜎𝑝, heading observation

ψ with covariance 𝜎𝜓. This function is divided into two

partial functions 𝑊𝑝 and 𝑊𝜓 that separately handle the

position and heading update

𝑊 (𝐩, 𝜎𝑝, 𝜓, 𝜎𝜓, 𝐱𝑡
(𝑖)

)

= 𝑊𝑝 (𝐩, 𝜎𝑝, 𝐱𝑡
(𝑖)

) 𝑊𝜎 (𝜓, 𝜎𝜓, 𝐱𝑡
(𝑖)

)

The position likelihood function compares the position

observation p with the position of the particle 𝐩𝑡
(𝑖)

𝑊𝑝 (𝐩, 𝜎𝑝, 𝐱𝑡
(𝑖)

) = p (𝐩|𝐩𝑡
(𝑖)

)

where 𝑝(∙) is the probability density function of a normal

distribution with mean 𝛍 = 𝐩𝑡
(𝑖)

 and covariance 𝜎𝑝.

When calculating the angular difference △ 𝜓(𝑖)

between a heading measurement ψ with the heading of

a particle 𝜓𝑡
(𝑖)

, the wrap-around between 0 and 2π must

be handled. This is accomplished by defining an angular

difference function 𝐷(α1, α2) that yields the smaller

angle between the two headings, which is in the interval
〈−𝜋; 𝜋〉

𝐷(α1, α2) = atan2(sin(α1 − α2), cos(α1 − α2)),

△ 𝜓(𝑖) = 𝐷 (𝜓, 𝜓𝑡
(𝑖)

)

It assumes that particles with near-zero values of △ 𝜓(𝑖)

must be close to the angle observation 𝜓, thus their

weight should be high, and vice versa. The heading

likelihood function 𝑊𝜓 performs this comparison by

computing the probability density function p(△ 𝜓(𝑖)) of

a normal distribution with mean 𝜇 = 0 and and

covariance σψ.

𝑊σ (𝜓, σψ, 𝐱𝐭
(𝐢)) = p(△ 𝜓(𝑖))

The weight update function W is then used to update the

prior particle weights 𝑤𝑡
(𝑖)

 with respect to all available

sensor measurements

𝑤𝑡+1
(𝑖)

= 𝑤𝑡
(𝑖)

 ⋅ 𝑊 (𝐩F̂, 𝜎F̂, 𝜓F̂, 𝜎F̂, 𝐱𝑡
(𝑖)

)

 ⋅ 𝑊 (𝐩B̂, 𝜎B̂, 𝜓B̂, 𝜎B̂, 𝐱𝑡
(𝑖)

)

 ⋅ 𝑊 (𝐩Â, 𝜎𝐴̂, 𝜓Â, 𝜎Â, 𝐱𝑡
(𝑖)

)

However, not all three functions are always included in

the calculation. The ArUco update 𝑊(𝐩Â,  …) occurs

312 Eduard Mráz et al.: Multi-sensor fusion for robust indoor localization of industrial UAVs using particle filter

only if a marker is currently being detected and a pose

estimate is available. The visual odometry updates

𝑊(𝐩F̂,  …) and 𝑊(𝐩B̂,  …) are skipped, if a failure of the

front or back T265 camera is detected, as described in

section 4.1. This method of weight computation also

allows us to incorporate additional sensor inputs into the

estimation process.

Finally, all particle weights are normalized to obtain

a probability distribution such that ∑ 𝑤(𝑖) = 1:

𝑤𝑡+1
(𝑖)

=
𝑤𝑡+1

(𝑖)

∑ 𝑤𝑡+1
(𝑖)𝑁

𝑖=1

In the edge case that none of the updates are available

the whole weight update step is skipped, and previous

weights are used to compute the state estimate – the filter

can estimate the state just based on the model of the

system accurately only for a couple of seconds (mainly

because the model is just approximate, and the true state

of the system will deviate from this model).

4.5 Resampling

By repeatedly applying the prediction step (section

4.3), the particles would gradually spread out over time,

until only a few particles remain near the true system

state. This is called the filter degeneracy problem [10].

To address it, the particles must be periodically re-

sampled. During this process, the particles with large

weights are replicated, and particles with low weights

are diminished.

Resampling does not have to occur at every iteration

of the particle filter. The metric of number of effective

particles [10], [11] can be used to estimate the number

of particles that meaningfully contribute to the filter

estimate

𝑁𝑒𝑓𝑓 =
1

∑ (𝑤𝑡
(𝑖)

)
2

𝑁
𝑖=1

The resampling is triggered when 𝑁𝑒𝑓𝑓 falls below

a threshold 𝑁𝑡ℎ , which was chosen to be 𝑁/4. The new

set of particles 𝐒𝑡+1 is generated using the systematic

resampling method [25], which was selected based on its

good algorithmic complexity 𝑂(N).

4.6 State estimation

The final step is to compute the state estimate

 𝐱𝑡̂ = [𝐩𝑡̂ 𝜓𝑡 ̂]
T

 from the current particle set 𝐒𝑡. The

position estimate 𝐩𝑡̂ with variance 𝜎p̂ is obtained as

weighted mean of positions of all particles

𝐩𝑡̂ = ∑ 𝑤𝑡
(𝑖)

𝐩𝑡
(𝑖)𝑁

𝑖=1

𝜎𝑝̂ = ∑ 𝑤𝑡
(𝑖)

(𝐩𝑡
(𝑖)

− 𝐩𝑡̂)
2

𝑁
𝑖=1

The heading estimate 𝜓𝑡̂ is computed as weighted

circular mean

𝑎1 = ∑ 𝑤𝑡
(𝑖)

sin (𝜓𝑡
(𝑖)

)𝑁
𝑖=1 , 𝑎2 = ∑ 𝑤𝑡

(𝑖)𝑁
𝑖=1 cos (𝜓𝑡

(𝑖)
)

𝜓𝑡̂ = atan2(𝑎1,  𝑎2) mod 2𝜋

When computing the weighted heading variance 𝜎𝜓̂, the

particle heading 𝜓𝑡
(𝑖)

 and the heading estimate 𝜓𝑡̂ can

not be directly subtracted, as this would introduce large

values near the warp-around between 0 and 2π. Instead,

the angular difference function D previously defined in

chapter 4.4 is used

σψ̂ =
∑ 𝑤𝑡

(𝑖)
𝐷 (𝜓𝑡

(𝑖)
, 𝜓𝑡̂)

2
𝑁
𝑖=1

∑ 𝑤𝑡
(𝑖)𝑁

𝑖=1

Afterwards, the filter continues with the next iteration.

5 Evaluation

The experimental evaluation is set up to mimic

a simple warehouse inventory monitoring scenario. A

map sketch of the testing environment and the desired

trajectory is shown in Fig. 4. The environment consists

of two rows of warehouse racks. The UAV takes off in

front of marker 1. Then UAV continues its path heading

towards RACK A. At the end of the RACK A, it does

180 degrees turn towards RACK B and continues on the

trajectory back to the starting point. An initial ArUco

marker is placed in front of the UAV take off position.

One primary ArUco marker is placed approximately in

the middle of each rack (two markers in total – green

markers in Fig. 4). The position of all markers in the

environment is known accurately. In a real-world

scenario, these markers will be spread throughout the

environment and provide accurate local position

information for the UAV.

To obtain a reference position estimate, additional

(secondary) ArUco markers (marked blue in Fig. 4) are

positioned at known locations along the expected UAV

flight path with focus on maximizing the number of

visible markers over the main course of the flight. It is

important to mention that only primary markers are used

by the particle filter in the estimation process, the

secondary markers are ignored.

Journal of Electrical Engineering, Vol. 75, No. 4, 2024 313

The UAV performs a single test flight in this

environment. During this flight, Ardupilot is configured

to directly use the pose estimate from the front T265

camera as position measurements via the mocap topic.

We record the pose estimates from the front and back

T265 cameras, ArUco pose estimates, Ardupilot velocity

commands and the output of the internal Ardupilot

Kalman filter pose estimator. The particle filter

algorithm is then executed offline using the collected

data. The filter parameters used in this test are

summarized in Table 1.

5.1 Results

Results are displayed in Figs. 5, 6 and 8. In Fig. 5, the

particle filter (blue line) is able to provide a continuous

smooth estimate of position. When a primary ArUco

marker is detected, the odometry measurement jumps

towards the ArUco position (see green markers in

Fig. 4). The global PF position estimate slowly con-

verges towards the ArUco position, instead of jumping

immediately. The black dots represent the ground truth

UAV position estimate obtained from the secondary

ArUco markers. The red line shows the position esti-

mated by the Ardupilot EKF using the position

measurements from the front T265 camera and IMU

measurements. Figure 6 shows the estimated positions

and headings after each PF update, as well as the

covariance of the PF position estimate. Figure 8 shows

the RMS error between the PF position estimate and the

ground truth position from ArUco detections.

Fig. 6. Results displayed in a single axis including X, Y,

Z and YAW angle. Figure also includes variance of the

PF. This result represents an ideal scenario – with no

hardware failure.

The only unexpected error which occurs is a bad Z

axis estimate during landing. This is visible in Fig. 6.

The issue arises because target velocity commands with

a negative Z velocity are being sent even after the UAV

is on the ground steadily, which causes particles of the

PF to continue moving downwards. This continues for

several seconds, until Ardupilot detects the landing and

commands a zero velocity. This could be addressed by

including the height sensor measurements into the PF

state estimation process, which is expected to be

implemented in future work.

Fig. 4. Sketch of the testing environment. Green

rectangles represent primary ArUco markers used by the

PF update, blue rectangles are secondary markers used

as ground truth position reference. The dashed line

shows the desired flight trajectory of the UAV.

Table 1. Particle filter parameters

Parameter Value

N Number of particles 2000

Nth Resample threshold N/4

σup Process model

position covariance
[0.125, 0.125, 0.125] m

σuψ Process model

heading covariance
2.5 rad

Fig. 5. Comparison of multiple position estimates. This

result represents an ideal scenario – with no hardware

failure.

314 Eduard Mráz et al.: Multi-sensor fusion for robust indoor localization of industrial UAVs using particle filter

The position estimation error (Fig. 8) is only com-

puted when reference ArUco markers are in sight of the

RGB camera. Notice the spike the error (Fig. 7) around

the 60 s mark. This is caused by the manoeuvre the UAV

performs. The UAV performs 180 degrees turn and

therefore no reference position data is available during

this time and so the error is not computed. Also, no green

markers are available as well and so only the odometry

data is fused during this turn and so the inaccuracy

spikes.

Fig. 7. Error of the ArduPilot fusion mechanism in

comparison to reference ArUco visual markers reference

To compare the proposed PF algorithm with another

sensor fusion solution, RMSE and position error

between reference ArUco markers and the existing

ArduPilot sensor fusion mechanism was also evaluated,

its position error is displayed in Fig. 7.

Fig. 8. RMS error of the particle filter in comparison

to the reference from ArUco visual markers. This result

represents the ideal scenario – with no hardware failure.

Figures 7 and 8 start from around the 30th second of

the flight. This is caused by the fact, that the reference

ArUco markers are only visible after that time.

Additional test to prove robustness and handling

sensor malfunction was simulated by turning back

odometry T265 camera off. The camera was turned off

around timestamp 32 seconds and the average error rose

to the value of 0.4202 m.

To compare our results with similar state-of-the-art

methods a selection of the current manuscripts has been

done. To make the comparison as fair as possible, the

manuscript in which authors perform similar experi-

ments are mainly based around visual odometry and

ArUco markers.

Table 2 shows the results of this comparison. Other

state-of-the-art methods outperform our system from the

standpoint of accuracy. However, shortcomings of these

state-of-the-art methods (which were stated in the

Related work section) have been overcome by our

system. For example, the price of all cameras on UAV

used in our system is lower than a single Velodyne

LiDAR. As far as robustness is concerned, occlusion or

disconnection of one camera sensor would not cause

failure of the whole process. Opposed to the [16] or [18]

where occlusion of markers or camera would cause

malfunction of the system. Finally, sensor disconnection

was addressed theoretically by using selective weight

update and then it was also tested experimentally.

The average execution time of the PF update function

with 2000 particles is 15.485 ms. This measurement is

based on the average of five runs of the particle filter on

a Jetson Xavier NX processor, with other software

components such as the camera driver and ArUco

detection running concurrently. The relatively high

execution time is due to the Python CPU-only

implementation of the PF. Performance improvements

could be achieved by re-implementing the filter in a

compiled language (such as C++) and utilizing GPU

acceleration to parallelize certain aspects of the

computation [12]. Despite this, the filter still achieves

satisfactory real-time performance. To substantiate this

claim, we compare our method's execution times with

those reported in related works that use onboard

computers for computations. For instance, the ES-EKF

method presented in [16] achieves approximately 20 ms

per execution step on an i5-based platform. The VIO

method based on AprilTag visual tags [15] executes in

250 ms, with the final EKF fusion running at unspecified

higher frequencies. Similarly, the work [18] uses Intel i5

series processors, achieving execution times under

100 ms.

The results show that the developed particle filter

localization method is able to achieve satisfactory

accuracy with adequate updates rates. Unfortunately, the

exact accuracy of the proposed system cannot be

measured at the present time due to the absence of a very

accurate reference localization system (such as VICON

etc.). Instead of using a reference system with exactly

measured accuracy, it was decided to use the camera

pose estimate with the use of ArUco markers, which are

widely used in various types of applications in robotics

[26, 27]. Using ArUco markers as a reference produced

satisfying results in terms of error - distance between

reference and the PF estimate and RMSE. Putting

Table 2. RMSE comparison

Method RMS Error

PF (Our method) 0.394 m

MHE and ArUco [17] 0.697 m

VIO method based on

AprilTag and EKF [15]
0.137 m

ES-EKF [16] 0.142 m

Journal of Electrical Engineering, Vol. 75, No. 4, 2024 315

calculated errors aside, it is safe to assume that the

proposed system was not “lost” during flights and there

were no significant spikes in the pose estimation, which

could cause a fatal crash of the UAV. The absence of

need to have an extremely accurate (order of

millimetres) localization system is based on the fact that

an autonomous flying UAV must utilize a robust

reactive navigation system which should prevent fatal

crashes. What should not happen is the absolute loss of

position estimate, which can happen due to hardware

failures. This scenario is minimized by utilizing the input

from multiple position estimation sensors.

6 Conclusion

This paper presented a localization method for

a UAV based on a particle filter. The filter fuses position

estimates from two visual odometry cameras and from

visual detections of fiducial markers. The method was

evaluated on data from real-life test flights, which shows

that the filter achieves acceptable accuracy in a sense

that it would not cause a serious accident. To conclude,

the work meets its requirements stated at the start by

authors, which is all in all considered as a step towards

a fully autonomous solution for UAVs operating

indoors.

Future work will focus on deploying the developed

algorithm to the UAV, to be used as the main real-time

pose estimator. This will include evaluating the filter

accuracy using an accurate position measurement

system and performing multiple flights to mitigate

stochasticity of the filter. The architecture of the particle

filter allows for more sensor inputs to be included in the

estimation process. Additionally, the Jetson Xavier NX

GPU could be utilized to parallelize the particle filter

computation, which would improve the speed and

efficiency of the computation.

Acknowledgement

This work was supported by projects APVV-21-0352

“Navigation stack for autonomous drones in industrial

environment” and MVPBLP - Mapping of indoor spaces

using unmanned aerial vehicles. The authors would like

to thank Airvolute s.r.o. for providing the necessary

UAV hardware and support.

References

[1] N. El-Sheimy and Y. Li, "Indoor navigation: state of the art and

future trends," Satellite Navigation, vol. 2, no. 1, 5 2021.

[2] C. Malang, P. Charoenkwan and R. Wudhikarn, "Implemen-

tation and Critical Factors of Unmanned Aerial Vehicle (UAV)

in Warehouse Management: A Systematic Literature Review,"

Drones, vol. 7, no. 2, 2023.

[3] F. J. Perez-Grau, F. Caballero, A. Viguria and A. Ollero,

"Multi-sensor three-dimensional Monte Carlo localization for

long-term aerial robot navigation," International Journal of

Advanced Robotic Systems, vol. 14, 2017.

[4] M. Labbé and F. Michaud, "RTAB-Map as an open-source

lidar and visual simultaneous localization and mapping library

for large-scale and long-term online operation," Journal of

Field Robotics, vol. 36, pp. 416-446, 2019.

[5] Vicon Motion Systems Ltd UK, "Award Winning Motion

Capture Systems | Vicon," [Online]. Available:

https://www.vicon.com/. [Accessed 15 07 2024].

[6] R. Mur-Artal and J. D. Tardos, "ORB-SLAM2: An Open-

Source SLAM System for Monocular, Stereo, and RGB-D

Cameras," IEEE Transactions on Robotics, vol. 33, p. 1255–

1262, October 2017.

[7] I. Cvišić, J. Ćesić, I. Marković and I. Petrović, "SOFT-SLAM:

Computationally efficient stereo visual simultaneous

localization and mapping for autonomous unmanned aerial

vehicles," Journal of Field Robotics, vol. 35, pp. 578-595,

2018.

[8] Intel Corporation, Intel® RealSense™ Tracking Camera T265.

[9] S. Thrun, D. Fox, W. Burgard and F. Dellaert, "Robust Monte

Carlo localization for mobile robots," Artificial Intelligence,

vol. 128, pp. 99-141, 2001.

[10] N. Yang, W. F. Tian, Z. H. Jin and C. B. Zhang, "Particle filter

for sensor fusion in a land vehicle navigation system,"

Measurement Science and Technology, vol. 16, p. 677–681,

February 2005.

[11] R. R. Labbe, Kalman and Bayesian Filters in Python.

[12] D. Fox, W. Burgard, F. Dellaert and S. Thrun, "Monte carlo

localization: Efficient position estimation for mobile robots,"

AAAI/IAAI, vol. 1999, p. 2–2, 1999.

[13] C. Snyder, T. Bengtsson, P. Bickel and J. Anderson, "Obstacles

to High-Dimensional Particle Filtering," Monthly Weather

Review, vol. 136, pp. 4629-4640, 2008.

[14] B. Yan, J. Xin, M. Shan and Y. Wang, "CUDA Implementation

of A Parallel Particle Filter for Mobile Robot Pose Estimation,"

in 2019 14th IEEE Conference on Industrial Electronics and

Applications (ICIEA), 2019.

[15] M. Bertoni, S. Michieletto, R. Oboe and G. Michieletto,

"Indoor Visual-Based Localization System for Multi-Rotor

UAVs," Sensors, vol. 22, no. 15, 8 2022.

[16] L. Markovic, M. Kovac, R. Milijas, M. Car and S. Bogdan,

"Error State Extended Kalman Filter Multi-Sensor Fusion for

Unmanned Aerial Vehicle Localization in GPS and

Magnetometer Denied Indoor Environments," in 2022

International Conference on Unmanned Aircraft Systems,

ICUAS 2022, 2022.

[17] S. Sina, B. Jeremy, J.-S. Farrokh and M. Iraj, "A Robust and

Adaptive Sensor Fusion Approach for Indoor UAV

Localization," in 2023 International Conference on Unmanned

Aircraft Systems, ICUAS 2023, 2023.

[18] D. Hao, W. Wei, C. Xu, R. Xiao and C. Sun, "Real-time

onboard 3D state estimation of an unmanned aerial vehicle in

multi-environments using multi-sensor data fusion," Sensors

(Switzerland), vol. 20, no. 3, 2 2020.

[19] NVIDIA Corporation, Jetson Xavier NX.

[20] Ardupilot, The Cube Overview.

[21] IntelRealSense, ROS Wrapper for Intel® RealSense™

Devices.

[22] F. J. Romero-Ramirez, R. Muñoz-Salinas and R. Medina-

Carnicer, "Speeded up detection of squared fiducial markers,"

Image and Vision Computing, vol. 76, pp. 38-47, 2018.

316 Eduard Mráz et al.: Multi-sensor fusion for robust indoor localization of industrial UAVs using particle filter

[23] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas and

R. Medina-Carnicer, "Generation of fiducial marker dictio-

naries using Mixed Integer Linear Programming," Pattern

Recognition, vol. 51, pp. 481-491, 2016.

[24] E. Mráz, J. Rodina and A. Babinec, "Using fiducial markers to

improve localization of a drone," in 2020 23rd International

Symposium on Measurement and Control in Robotics

(ISMCR), 2020.

[25] T. Li, M. Bolic and P. Djuric, "Resampling Methods for

Particle Filtering: Classification, implementation, and

strategies," Signal Processing Magazine, IEEE, vol. 32, pp. 70-

86, May 2015.

[26] A. Babinec, L. Jurišica, P. Hubinský and F. Duchoň, "Visual

Localization of Mobile Robot Using Artificial Markers,"

Procedia Engineering, vol. 96, December 2014.

[27] D. Avola, L. Cinque, G. L. Foresti, C. Mercuri and D. Pannone,

"A practical framework for the development of augmented

reality applications by using ArUco markers," in International

Conference on Pattern Recognition Applications and Methods,

2016.

Received 25 April 2024
