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Multi-sensor fusion for robust indoor localization  

of industrial UAVs using particle filter 

 

Eduard Mráz1, Adam Trizuljak2, Matej Rajchl1, Martin Sedláček1, 

Filip Štec1, Jaromír Stanko1, Jozef Rodina1 

 

Robotic platforms including Unmanned Aerial Vehicles (UAVs) require an accurate and reliable source of position information, 

especially in indoor environments where GNSS cannot be used. This is typically accomplished by using multiple independent 

position sensors. This paper presents a UAV position estimation mechanism based on a particle filter, that combines 

information from visual odometry cameras and visual detection of fiducial markers. The article proposes very compact, 

lightweight and robust method for indoor localization, that can run with high frequency on the UAV’s onboard computer. The 

filter is implemented such that it can seamlessly handle sensor failures and disconnections. Moreover, the filter can be extended 

to include inputs from additional sensors. The implemented approach is validated on data from real-life UAV test flights, where 

average position error under 0.4 m was achieved.  
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1 Introduction 

One of the fundamental challenges in robotics is to 

determine the position of the robot within the 

environment. This is a significant task for mobile robots, 

especially among flying robots (unmanned aerial 

vehicles – UAV, drones) in industrial applications. In 

these applications, autonomous behaviour helps to speed 

up various processes, but it also places very high 

requirements on the UAV in terms of robustness, 

reliability and operational safety. It is crucial to estimate 

the pose of the UAV continuously, because discrete 

behaviour (such as sudden position jumps) can cause 

system instability. This can cause the UAV to crash, 

which poses a risk to the operating personnel and can 

lead to damage to the UAV or the operating 

environment. Moreover, it is desirable to utilize multiple 

independent sources of position estimation in order to 

increase the accuracy of localization, as well as to 

provide redundancy in the case of failure of some of the 

sensors [1].  

The required accuracy of the system usually depends 

on many factors, such as what type of indoor space is 

required for the UAV to navigate. How many and what 

type of obstacles are in this space and various other 

factors. Therefore, it is difficult to set up general rules 

for the required accuracy or performance. 

In this article, warehouse inventory is simulated. This 

is the environment where all the tests take place and 

where the whole system was developed. Thus, it is the 

main application of proposed system, but the system is 

not limited to it. Warehouse inventory is a perfect task 

to be done by an UAV [2] because it moves vertically 

with more ease than humans. However, it might be 

difficult to achieve high repeatability with such a system. 

High repeatability in this case means minimizing 

possibility of failures and accidents. Otherwise, the 

system would not be considered reliable. 

There are multiple requirements that need to be 

satisfied with such applications for UAV’s. Since the 

UAV performs flights in 3 dimensions, the localization 

system needs to provide a 3D pose estimate. The pose 

estimate must be accurate and must be provided in real-

time, so that it can be used by the UAV navigation 

system for real-time position control. It is intended to use 

the system in visually well-structured industrial 

environments – warehouses, industrial halls etc. Many 

solutions such as [3] and [4] rely on a pre-constructed 

map. Every solution must use some type of map, unless 

the facility is equipped with very accurate indoor 

positioning system such as VICON [5]. In our 

application, the mapping problem is aided by using 

fiducial markers positioned at known locations 
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throughout the environment. This process is expected to 

require only a one-time effort during installation, when 

the positions of markers would be accurately measured 

by standard tools like laser measuring tool.  

Using multiple sensors requires the use of a fusion 

mechanism to produce a combined state estimate. This 

paper proposes a solution in the form of a particle filter 

(PF). PF is used to fuse multiple position estimation 

sources into one final, robust and reliable estimate of a 

UAV’s pose. PF allows the fusion of multiple 

sensors/methods with various qualities, in this case 

position estimates from two Intel RealSense T265 visual 

odometry cameras, and position estimates from visual 

detections of fiducial markers. The core idea is to 

combine the real-time visual odometry measurements, 

which can exhibit drift over time, with accurate absolute 

position information from detections of fiducial 

markers, which are sparsely positioned in the operating 

environment. The novelty of this approach relies on 

using two Intel T265 cameras. To this date, authors are 

not aware of any localization system, which was 

designed specifically to fuse two Intel T265 cameras for 

one final position estimate. Also, in the analysed sensor-

fusion articles, there is no focus on sensor disconnection 

or malfunction. On the other hand, our work focuses on 

solving the sensor disconnection/malfunction scenarios, 

which explicitly emphasizes higher level of robustness. 

Another advantage of our proposed approach is that it 

can use ArUco markers, but the system is also fully 

usable without them.   

The implemented filter is intended to be used as the 

main real-time position estimator for a UAV in indoor 

industrial applications. The implementation of the 

system allows it to run on a small form factor on-board 

computer, which also encourages the miniaturization of 

the UAV itself. The price of the sensors and hardware 

used in this work is a fraction of the price compared to 

the works analyzed in the Related work section. The 

final cost is often omitted in research papers, but it is 

proven to play an important role in industrial 

applications, such as warehouse inventories [2]. 

 

2 Related work 

The interest to develop a fully autonomous UAV is 

obvious in the robotic community. Numerous systems 

rely on SLAM (simultaneous localization and mapping) 

methods for localization, such as ORB-SLAM [6], 

RTAB-MAP [4] and SOFT-SLAM [7]. SLAM methods 

solve a problem, where no map exists prior to the 

localization process, so the map is being continually 

constructed during the simultaneous calculation of the 

robot's position. The output from SLAM methods can 

then be used as a localization source for the robot. 

Notably, SLAM algorithms tend to be computationally 

expensive, which can prohibit their use on platforms 

with limited computational resources.  

In response to this issue, several devices have been 

introduced to the market in the recent years that present 

a more integrated position estimation solution. A prime 

example is the Intel RealSense T265 [8]. It includes  

a stereo camera pair coupled with an inertial measure-

ment unit (IMU), and the data is processed by an 

embedded application-specific processor that executes a 

highly optimized visual-inertial odometry algorithm. 

Thanks to that the device has a low power consumption, 

low computational requirements and is easy to use and 

integrate into robotic platforms. However, its proprietary 

visual odometry algorithm may suffer from drift and 

occasional discontinuities in pose estimation. 

A common approach to robot localization is Monte 

Carlo Localization (MCL). It utilizes the particle filter 

technique, which uses a large set of randomly sampled 

weighted particles to represent a posterior distribution of 

the possible system states given the current sensor 

observations and prior state probabilities. Thus, the 

particles (samples) are concentrated in the area of high 

probability [9]. This is more efficient than the Markov 

localization algorithm, which maintains a probability 

distribution over the entire state space [9]. Another 

advantage of the PF is that it can represent even highly 

non-linear, non-Gaussian systems with almost arbitrary 

process and sensor models [9-11]. In contrast, the 

Kalman filter (KF), which is another popular approach 

to localization and sensor fusion, relies on a linear 

system model. 

Notable examples of popular PF-based localization 

systems are AMCL [12] and AMCL-3D [3], that can be 

used to localize a robot in a known environment map. 

AMCL stands for Adaptive Monte Carlo Localization. 

In principle, Monte Carlo mechanism is used to fuse 

multiple sources (sensors) to produce one output - robot 

position estimate in GNSS denied environments using 

particle filtering principles. In the case of AMCL, a scan 

from a 2D laser sensor is aligned with a known 2D map 

of the environment, which is used for position estimation 

in 2D. AMCL-3D extends this approach into three 

dimensions. It uses an RGB-D sensor to match a point 

cloud with a previously constructed 3D map of the 

environment to estimate the robot's position in 3D. As an 

addition, AMCL-3D uses stationary beacon (such as 

UWB radio) measurements to satisfy robustness and 

improve accuracy of the system. 

A disadvantage of PF is that depending on the model 

complexity and size of the state space, it may require  

a very large number of particles to achieve accurate 

results [13], which in turn makes it computationally 

expensive. However, the weight of each particle can be 

computed independently of other particles, which means 

that these computations can be highly parallelized. Thus, 

modern GPU acceleration techniques can be used to 



306           Eduard Mráz et al.: Multi-sensor fusion for robust indoor localization of industrial UAVs using particle filter  

 

dramatically improve filter performance [14]. As far as 

sensor-fusion methods are concerned, there were 4 

recent articles analysed [15-18].  

The work [18] contains a standard approach to the 

fusion of several sensors. It achieves interesting results, 

but also provides several reasons for the existence of the 

system proposed in this article. The work deals with the 

issue of real-time UAV state estimation in various 

environments using the Extended Kalman Filter (EKF) 

algorithm. EKF is used for the fusion of data from 

several heterogeneous sensors. These sensors include 

IMU, magnetometer, barometer, GNSS receiver, optical 

flow sensor, LiDAR and RGB-D camera. Interestingly, 

the work presents a hybrid architecture of multi-sensor 

data fusion (MSDF), which combines local program 

nodes for primary data fusion and a secondary program 

node for global fusion using the EKF algorithm. The 

accuracy in the results reached an error of 10 cm and less 

in the position and ±3° in the heading of the UAV. 

Although the system brings high accuracy, the use of 

expensive LiDAR, the high weight of the drone (8.5 kg) 

and the dependence on a standard PC represent 

significant disadvantages. These sensors cost thousands 

of euros. In addition, the work uses a full-fledged Intel 

i5 series processor. Nevertheless, the estimate ran with  

a frequency of only 10 Hz. 

The paper [17] presents an adaptive and robust sensor 

fusion approach for indoor UAV localization. The main 

goal is to improve the estimation of the state (position) 

of the UAV using the Moving Horizon Estimator (MHE) 

algorithm in combination with ArUco markers. This 

approach uses Gaussian Mixture Models (GMMs) to 

model sensor uncertainty, thereby increasing locali-

zation accuracy. The system was tested and compared 

with the Vicon reference system. In these tests, it 

achieves error of 6 cm and less. The problems arise at 

several points. For example, several ArUco markers are 

used to simulate several sensors. However, these 

markers are captured by only one camera – that is, one 

sensor. This pre-empts the use of heterogeneous sensors, 

or at least does not verify the possibility of their use. 

Since ArUco markers represent the only estimate of the 

system's position, it is a condition that they are always in 

the camera's sight. Such a restriction markedly limits the 

range of spaces where such localization may take place. 

The work [15] deals with data fusion using EKF. The 

work presents a system of visual-inertial odometry 

(VIO) based on AprilTag visual markers and data from 

the IMU. Proposed system allows for a high density of 

markers, which minimizes the loss of information at 

higher UAV speeds. The dense distribution of markers 

ensures that even at higher speeds, several markers are 

always within range, thus increasing the reliability of 

localization. The experimental results show that the 

average localization error is lower than 11 cm. The plus 

point is that the system has been verified on two different 

UAV platforms (quadrotor and hexrotor) in different 

flight conditions. The results show good localization 

consistency, indicating that the system is adaptable to 

different types of UAVs and to different flight scenarios. 

The problem is the absolute dependence on visual 

markers. Additionally, these markers were placed on the 

ground, which may be unacceptable in some industrial 

environments. In addition, the marker map proposed in 

the article occupies a large area. 

The article [16] deals with the problem of locating 

UAVs indoors, where GPS and magnetometer data are 

unavailable or unreliable. The proposed solution uses a 

variation of the EKF algorithm - error state extended 

Kalman filter (ES-EKF) for sensor fusion. ES-EKF aims 

for accurate and robust position and orientation 

estimations by exploiting the linear dynamics of the 

error state to optimally predict and update the state error 

covariance. Simply put, this more advanced version of 

the EKF additionally includes individual sensor errors in 

the prediction and update steps. The authors declare that 

in this way it is ensured that only measurements with a 

smaller error are included in the fusion. The article 

presents a system for the fusion of a relatively large 

number of heterogeneous sensors and location sources: 

the Ultra-wideband (UWB) Pozyx system, visual 

odometry from the Intel RealSense T265 camera and the 

SLAM algorithm from the LiDAR sensor. The limitation 

for the LiDAR used is the same as for the work [18]. 

UWB limits system deployment due to the need to 

deploy active electronic devices across an industrial 

space. 

Analysing strict sensor fusion methods confirms 

recent scientific efforts to provide robust and accurate 

solution for indoor localization. As shown in analysis of 

related work, many of these efforts provide these 

qualities. However, it has been proven that these efforts 

are often not price effective, or it is not possible to 

deploy them in industrial environments due to the 

aforementioned limitations. The system proposed in this 

article aims to solve the problems pointed out in the 

analysis. 

The rest of this paper is structured as follows. First, 

section 3 gives an overview of the utilized UAV 

platform, describing the available sensors and their data 

outputs. Next, section 4 details the implementation of the 

particle filter fusion mechanism, including the pre-

processing of sensor data, particle weight update, 

resampling and state estimation, as well as sensor failure 

handling. The implemented filter is then evaluated in the 

section 5 using data from real-life flight tests. 
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3 Platform description 

Development and testing were carried out on the 

Discovery quad-rotor UAV developed by Airvolute 

s.r.o. It is a modular robotic UAV solution intended for 

various industrial applications such as warehouse 

inventories. Thanks to its modular design, it is also 

appropriate for educational, development, and testing 

purposes. It is powered by the NVIDIA Jetson Xavier 

NX compute module [19] with a 6-core ARM CPU and 

a GPU with 384 CUDA cores. This compute module 

offers large opportunities for the use of deep learning 

and GPU-accelerated parallel algorithms. The software 

stack of this platform is based on the Robot Operating 

System (ROS) and allows for quick deployment of user 

applications. Although the platform allows to use any 

ROS version compatible with OS Ubuntu 20.04 LTS, the 

algorithms described in this article are implemented on 

ROS1 Noetic version.  

The Discovery UAV is equipped with multiple 

redundant sensors to increase robustness in case of 

hardware or software failure. The system obtains raw 

position estimates using two independent Intel 

RealSense T265 visual odometry cameras and pose 

estimation based on ArUco fiducial markers detection. 

Additionally, the UAV carries an Intel RealSense D455 

depth and RGB camera and a lidar sensor that measures 

the height above ground. These sensors are also used for 

reactive navigation in the environment. The following 

subsections describe the on-board sensors and their data 

outputs, that are relevant for this work. 

 

 

Fig. 1. The Airvolute Discovery UAV used to perform 

the flight tests in this work 

 

 

3.1 Flight controller 

The UAV is controlled by The Cube autopilot 

module [20] with a modified version of the Ardupilot 

firmware. Ardupilot runs the complete control loop 

including trajectory tracking and position, velocity and 

angular rate PID controllers. The firmware was modified 

to publish the target velocity signal 

𝐮B = [ 𝐯 B  𝜔𝜓 ]
T, 

which consists of the target linear velocity vector  

vB = [vx  vy  vz ]T in the body frame B of the UAV and  

a target yaw rate 𝜔𝜓 . 

 

3.2 Visual odometry 

The Intel RealSense T265 [8] is a camera which is 

able to compute visual-inertial odometry based on visual 

feature tracking and a built-in IMU. It features a stereo 

fisheye camera pair, which is used for feature detection. 

The camera outputs a 200 Hz stream with estimated 

position vector 𝐩O
W = [𝑝𝑥 𝑝𝑦 𝑝𝑧]

T
, orientation quarter-

nion 𝐪O
W = [𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤]

T
, linear velocity 𝐯O =

[𝑣𝑥𝑣𝑦𝑣𝑧]
T

 and angular velocity 𝛚O = [ω𝑥 ω𝑦 ω𝑧]
T

. All 

quantities are estimated relative to a gravity-aligned 

global frame W, with its origin and initial heading being 

initialized to zero upon camera startup. Importantly, as 

with any visual odometry algorithm, the T265 pose 

estimate is subject to drift and it may also exhibit 

discontinuities. 

The T265 camera uses a proprietary visual odometry 

algorithm, which does not directly provide covariance 

matrices for the pose estimates. Instead, a four-level 

estimate confidence value 𝑐 ∈ { 0,1,2,3 } is provided, 

where 0 indicates low confidence (i.e., bad tracking 

quality) and 3 indicates high confidence. This value is 

therefore used by the realsense-ros package [21] to 

compute an “approximate” odometry covariance value 

𝜎O = 𝜎0 ×  103−𝑐 

where 𝜎0 is a baseline covariance parameter, typically 

set to 0.01 m. 

 

 

In our platform, two T265 sensors are used with the 

goal of increasing system robustness. One sensor is 

placed in the front of the drone and another one on the 

back side, see Fig. 2. This not only helps with making 

hardware redundancy possible but also each camera can 

 

Fig. 2. Sensor placement of Airvolute Discovery 

UAV 
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see different parts of the environment. This can help with 

visibility issues, e.g., when one camera is partially 

obstructed, blinded by over-exposure or when it faces  

a low-texture environment. In such cases the estimate 

confidence of this camera is decreased, but the estimate 

from the other camera can still be used. In the rest of this 

paper, measurements from the front and back camera 

will be denoted by subscripts F and B, and the respective 

world frames will be denoted F and B. 

 

3.3 Localization with visual markers 

The T265 cameras estimate their pose relative to their 

initial position, however the transformations between 

their respective reference frames and the global frame of 

the environment are initially unknown. To address this 

problem, multiple ArUco visual markers [22, 23] are 

placed throughout the environment at known locations 

along the expected flight trajectory of the UAV. 

Figure 3 illustrates the coordinate frames used by the 

system. W stands for World frame, M stands for Marker 

frame and U stands for UAV frame. Ultimately, the 

position of the UAV in the World frame needs to be 

determined. Orientation of the M frame is identical to the 

W frame. The transform of a single marker in the world 

frame 𝐓M
W is set by placing the marker on well measured 

positions in space where localization takes place. This 

transform is assumed to be constant and since the 

position of the marker in the global frame is also known 

this makes the process known correspondence problem. 

Using the known marker positions, it is possible to find 

the transform (position and orientation) 𝐓U
W between 

world and the UAV usign the 𝐓U
M (UAV to marker) 

transform. This transform is determined by a camera 

pose estimation process based on ArUco markers 

described in [24]. Whenever a marker is detected by an 

on-board camera, this method is used to estimate the 

position and rotation (heading) of the UAV with respect 

to the world frame W, defined by the vector 𝐩A
W =

[𝑝𝑥 𝑝𝑦𝑝𝑧 ]
T

 and the quaternion 𝐪A
W = [𝑞𝑥 𝑞𝑦 𝑞𝑧 𝑞𝑤]

T
, 

which is then converted to Euler angles representation to 

obtain the global heading 𝜓A
W. The covariance of this 

detection is 𝜎A. 

One marker is positioned such that it is in view of the 

UAV immediately after takeoff. Position estimate 

obtained from the initial (starting) marker is only 

accepted, when it is considered stable. Stability is 

achieved when the variance of pose estimate drops 

below a specific threshold [24]. This initial detection is 

then used to obtain the initial position of the UAV 𝐩A0
W . 

The initial rotation is set to 𝜓A0
W = 0. 

 

 

 

4 Particle filter 

Particle filter is a sequential Monte Carlo method that 

uses a large number of weighted particles to statistically 

represent possible system states. In general, a particle 

filter works by first propagating the particle states using 

a system model and the current control command. 

Afterwards, all particles are weighted based on how well 

they correspond with the current sensor measurements. 

The state estimate is then computed as a weighted mean 

of all particles. Lastly, the set of particles is resampled 

according to their calculated weights. 

The decision to use a particle filter as the sensor 

fusion mechanism was based on several factors. Firstly, 

the RealSense T265 camera does not provide a true 

covariance value, as discussed in section 3.2. This, when 

combined with various non-linearities of the UAV 

system, would make it difficult to use as an input to  

a more traditional Kalman filter, which relies on a linear 

system model and accurate covariance values. While the 

Extended and Unscented Kalman filter techniques can 

be applied to non-linear systems, the particle filter can 

achieve better performance [10]. Moreover, the particle 

filter is able to represent arbitrary, non-analytical 

distributions [11]. A disadvantage is the increased 

computational load due to the high number of particles 

and the associated weight update calculations, however 

these could be massively parallelized using GPU 

acceleration [14], leveraging the power of the on-board 

Jetson Xavier NX processor. The current version of the 

particle filter presented in this paper is implemented in 

the Python language and uses only the CPU for 

calculations, however it still achieves sufficient real-

time performance. 

In this work, the goal of the particle filter is to 

estimate the state of the UAV 

𝐱̂  =  [ 𝐩̂  𝜓̂ ]T 

consisting of the global 3D position vector  

𝐩̂ = [ 𝑝𝑥̂   𝑝𝑦̂  𝑝𝑧̂ ]
T

 and global heading 𝜓̂. In the algo-

rithm, the estimation of roll and pitch angles was omitted 

because the UAV primarily follows planar trajectories, 

and the onboard autopilot system, Ardupilot, already 

delivers sufficiently accurate estimates for these angles. 

Heading is however more complicated, since indoor use 

of compass can prove difficult, requiring calibration for 

each of the different industrial environments which can 

change dramatically over the course of flight (e.g., flying 

from open space to an aisle between the racks). 

Therefore, to keep the system robust heading needs to be 

estimated using different approach and so it is estimated 

as one of the states of the PF. Our particle filter is 

tailored towards high-level position control and 

trajectory tracking, where estimation of global heading 

is critical. 
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Fig. 3. Basic coordinate frames of the proposed PF 

localization system. 

 

At a given time, step i, the i-th particle contains  

a position vector 𝐩𝑡
(𝑖)

 and heading 𝜓𝑡
(𝑖)

: 

𝐱𝑡
(𝑖)

= [ 𝐩𝑡
(𝑖)

 𝜓𝑡
(𝑖)

 ]
T

 

The state of the UAV is statistically represented by a set 

of N weighted particles 

𝐒𝑡 = {𝐱𝑡
(𝑖)

;  𝑤𝑡
(𝑖)

},  𝑖 ∈ 1. . . 𝑁, 

where the individual particles 𝐱𝑡
(𝑖)

 are random samples 

from the state space. The weight of the i-th particle 

𝑤𝑡
(𝑖)

∈ (0; 1) describes the posterior probability that this 

particle accurately represents the true system state given 

its prior probability and current sensor inputs. The 

implemented particle filter algorithm is summarized in 

Algorithm 1. The following sub-sections provide 

detailed description of each step of the computation. 

 

Algorithm 1 Particle filter summary 

1: Input: Number of particles N, Initial particle 

position 𝐱0 and variance 𝜎0 

2: Initialize particle set 𝐒 = {𝐱(𝑖);  𝑤(𝑖)},  𝑖 ∈

1. . 𝑁, 𝐱(𝑖) ∼ N(𝐱0, 𝜎0),  𝑤(𝑖) = 1/𝑁 

3: loop 

4:     Input: Pose estimates 𝐩F, 𝐩B, 𝐩A in World 

frame, Velocity command u 

5:     for i = 1 to N do                           » Prediction 

6:         Sample process noise 𝐮∗ ∼ N(0, 𝜎u)  

7:         𝐱(𝑖) ← 𝐱(𝑖) + (𝐮 + 𝐮∗)d𝑡   » Move i-th 

particle by velocity command + noise 

8:     end for 

9:     for i = 1 to N do      » Selective weight update 

10:         if 𝐩F, 𝜓F is available then » Update w.r.t. 

front odometry estimate 

11:             𝑤(𝑖) ← 𝑤(𝑖) ∗ 𝑊(𝐩F, 𝜓F, 𝐱(𝑖)) 

12:         end if 

13:         if 𝐩B, 𝜓B are available » Update w.r.t. back 

odometry estimate 

14:             𝑤(𝑖) ← 𝑤(𝑖) ∗ 𝑊(𝐩B, 𝜓B, 𝐱(𝑖)) 

15:         end if 

16:         if 𝐩A, 𝜓A are available » Update w.r.t. 

ArUco pose estimate 

17:             𝑤(𝑖) ← 𝑤(𝑖) ∗ 𝑊(𝐩A, 𝜓A, 𝐱(𝑖)) 

18:         end if 

19:     end for 

20:     if 𝑁𝑒𝑓𝑓 < 𝑁‐ th  

21:          Resample St given 𝑤(𝑖) 

22:     end if 

23:     Normalize weights s. t. ∑ 𝑤(𝑖) = 1 

24:     𝐱̂ ← 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (𝐒𝑡)   » Compute state 

estimate 

25: end loop 

 

4.1 Input processing 

The acquired sensor data described in section 3 needs 

to be pre-processed before it can be used by the particle 

filter. This consists mainly of transforming all measure-

ments into a common global frame and is detailed in the 

following subsections. This processing occurs before 

every particle filter update step, i.e., at 20 Hz. 

The desired velocity command 𝐮B = [𝐯B ω𝜓]
T
 in the 

UAV body frame B is published by the flight controller 

at 20 Hz. This velocity must first be transformed into the 

world frame W using the quaternion 𝐪A from the ArUco 

marker detection: 

𝐮W = [ 𝐯W ω𝜓 ]
T

= [ 𝐪A
W 𝐯B  𝐪A

W−1 
ω𝜓 ]

T
, 

where 𝐪A
W−1

= [−𝑞𝑥  − 𝑞𝑦  − 𝑞𝑧  𝑞𝑤]
T

 represents the 

quaternion conjugation operation. This becomes the 

control input that is used to propagate the particles in the 

filter predict step. To keep the nomenclature concise, the 

control input in the global frame, the control input in the 

global frame will be further labelled as u, omitting the 

World frame subscript. 

The front and back visual odometry cameras provide 

estimates of odometry poses, consisting of position 

vectors 𝐩F, 𝐩B and orientations 𝜓F, 𝜓B. These 

measurements are transformed into the world frame 

using the world frame estimate from ArUco, and static 

transforms that describe the position of the sensor with 

respect to the center of gravity of the UAV. For instance, 

by placing an odometry sensor on the back of the UAV, 

there is a static transform representing X, Y, Z position 

offset and yaw rotation offset by 180 degrees. 
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In the first stage, it is necessary to rotate all those 

coordinate frames to match the global orientation of the 

UAV. Translating is not necessary, because only 

position increments are used instead of the absolute 

position estimate. For this purpose, the initial position 

and orientation – 𝐩A0
W  and 𝜓A0

W  respectively – detected 

from initial ArUco camera pose estimate is used. So, to 

transform odometry measurements 𝐩F, 𝐩B, 𝜓F, 𝜓B to the 

global frame, rotation transforms 𝐑F
W and 𝐑B

W need to be 

applied to both position vectors 𝐩F, 𝐩B and orientations 

𝜓F, 𝜓B. These transformations are obtained by 

multiplying the odometry yaw measurements with the 

initial ArUco yaw transform 𝜓A0
W  

𝐑F
W = 𝜓A0 

W 𝜓F
−1, 

𝐑B
W = 𝜓A0

W  𝜓B
−1. 

For the system to become immune to sensor 

malfunction, the PF process cannot hang on sensor 

disconnection/malfunction event. For this reason, a fail-

safe mechanism was implemented, which periodically 

checks the newest received message from every sensor. 

If the message is older than a specified threshold, the 

source is discarded from the state estimation process. 

The threshold value depends on the frequency that the 

sensor is working with.  

From the particle filter perspective this means that the 

sensor data from this sensor will not have its’ weight 

function evaluated and the specific step will be skipped. 

This is one of the advantages of using particle filter since 

not all of the weighting functions need to be evaluated at 

each iteration of the algorithm. This helps to deal with 

situations in which the measurements do not come 

synchronized but appear at different intervals or 

different rates.  

Another condition that needs to be handled is the 

reconnection of the sensor in the middle of the process. 

The problem is that after reconnecting, the visual 

odometry estimate usually starts in its own local frame 

from zero position. After it has been detected that the 

sensor is successfully working again, the transform from 

local sensor frame to the world frame needs to be 

applied. Again, only rotation transform is needed, 

because only position and heading increments are used, 

so translation is not needed. The heading of the last PF 

pose estimate is used as a world frame orientation in this 

case. Reconnect rotation transform is set by computing 

a difference between the PF heading (yaw angle) 𝜓̂ and 

the current heading of the odometry sensor 𝜓 – which 

was reset after reconnection. Calculating reconnect 

rotation transform 𝐑R is symbolically denoted by using 

a function QuaternionFromEuler which converts single 

euler angles (roll, pitch, yaw) to one complete 

quaternion. 

𝐑R = QuaternionFromEuler(0,0, 𝜓̂ − 𝜓) 

Finally, after the reconnection event, the odometry 

position estimate is transformed to the world frame as 

follows: 

𝐩S
W = 𝐩𝐑W𝐑R 

The last transform consists of rotating a static trans-

lation vector 𝐭S, which represents translation of the 

odometry (or any other) sensor frame with respect to 

UAV base frame. Illustration of configuration of the 

UAV used in this work is displayed in Fig. 2. To 

transform 𝐭S into the world frame, it needs to be in the 

world frame of the sensor's position estimate 𝐩W. Define 

𝐑C
W as a rotation holding current yaw estimate 𝜓 of  

a specific sensor. Furthermore, it needs to include a static 

rotation 𝐑S of the sensor with respect to the UAV base 

frame. It should be noted that 𝐭S and 𝐑S depend on the 

physical sensor placement on the UAV and need to be 

measured prior to flight. Final transform of 𝐭S into  

a world frame is then defined as 

𝐭W = 𝐭S 𝐑C
W 𝐑S 

Then, it is possible to add this vector to the current 

position estimate coordinates of a specific sensor 

𝐩W = 𝐩S(𝑥,𝑦,𝑧)
W + 𝐭W 

Calculating odometry increments is done by calculating 

the distance between two consecutive measurements 

from T265 visual odometry sensors 

△ 𝐩 = 𝐩𝑡
W − 𝐩𝑡−1

W , 

△ 𝜓 = atan2(sin(𝜓𝑡 − 𝜓𝑡−1),  cos(𝜓𝑡 − 𝜓𝑡−1)) 

Odometry increments are then used to obtain an 

estimated global position and heading from the sensor 

𝐩𝑡+1̂ = 𝐩𝑡̂ +△ 𝐩, 

𝜓𝑡+1̂ = (𝜓𝑡̂ +△ 𝜓) mod  2𝜋 

These calculations are applied to both the front and 

back T265 measurements, which produces the estimated 

global position from the front camera 𝐩F̂, 𝜓F̂  and back 

camera 𝐩B̂, 𝜓B̂. This method is specific for sensors used 

with the proposed PF mechanism. The process of 

increment calculation may vary depending on different 

hardware. 

The reason behind using odometry increments 

instead of absolute position estimates from odometry 

sensors is to avoid biasing the particle filter with 

accumulated odometry error. Error accumulation is 

fairly common in computing visual odometry. Currently 

used odometry sensors – T265 cameras – are closed 

systems which perform optimization to some extent. To 

follow the proposed PF architecture, it is desired to use 

the simplest form of odometry measurements, in other 

words – most unprocessed data which is possible to 

obtain. Then, after obtaining such data, state estimation 

optimization is performed inside the PF algorithm. 
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To keep the notation clear, this superscript W will be 

omitted in the rest of this paper, thus p will denote  

a position measurement already transformed into the 

World frame. 

 

4.2 Filter initialization 

After takeoff, the filter waits until the initial estimate 

of ArUco position 𝒑𝐴0 and heading 𝜓𝐴0 is available. The 

positions and rotations of all particles 𝑖 ∈ 1 … 𝑁 are then 

initialized by generating samples from normal 

distributions that are centered about this initial position 

estimate: 

𝒑(𝒊) ∼ N (𝒑𝐴0, 𝜎𝐴0) 

𝜓(𝑖) ∼ N (𝜓𝐴0, 𝜎𝜓𝐴0) 

The covariance parameters 𝜎A0 and 𝜎𝜓0 control the 

initial spread of the particles, which expresses the 

uncertainty of the initial pose estimate. Since the initial 

position of the UAV within the environment is well 

known, relatively (w.r.t. to the size of the environment) 

low values σ𝐴0 = 1.0 m and σψ0 = π/4 were used. All 

particles are assigned a uniform weight 𝑤𝑡
(𝑖)

= 1/𝑁. 

 

4.3 Prediction 

Once the filter is initialized, its update process is 

executed upon every received velocity command 𝐮 =

[ 𝐯 ω𝜓 ]
T
, which occurs at 20 Hz. At a given time step t, 

the position of every particle 𝐱𝑡
(𝑖)

= [ 𝐩𝑡
(𝑖)

 𝜓𝑡
(𝑖)

]
T

∈ 𝐒𝑡 is 

predicted using a linear motion model 

𝐩𝑡+1 = 𝐩𝑡 + (𝐯 + 𝐯∗) d𝑡 

where 𝐯∗ ∼ N(0, 𝜎up) is a sample of the Gaussian 

process noise with covariance 𝜎up, which describes the 

uncertainty in tracking of the desired velocity signal. The 

heading angle prediction follows a similar principle 

𝜓𝑡+1 = (𝜓𝑡 + (𝜔𝜓 + 𝜔𝜓
∗ ) d𝑡) mod 2𝜋 

where the sample of the Gaussian process noise ω𝜓
∗ ∼

N(0, 𝜎uψ) with covariance 𝜎uψ models the uncertainty 

of yaw rate tracking. The modulo operation ensures that 

the predicted angle remains within the interval 〈0;  2𝜋〉. 

 

4.4 Selective weight update 

The next step is to update the weight of each particle 

with respect to multiple measurement sources. Through 

the incremental calculation described in section 4.1, the 

front and back T265 cameras provide the estimated 

positions 𝐩F̂, 𝐩B̂ and headings 𝜓F̂, 𝜓B̂ with 

corresponding covariances 𝜎F̂, 𝜎B̂. If an ArUco marker is 

currently being detected, it provides the estimated pose 

𝐩Â, heading 𝜓Â and covariance 𝜎Â. The idea is to 

selectively incorporate these measurements only when 

they are available or reliable. 

We define a function W that computes the likelihood 

of a particle 𝐱𝑡
(𝑖)

= [𝐩𝑡
(𝑖)

 𝜓𝑡
(𝑖)

]
T

 based on the position 

observation p with covariance 𝜎𝑝, heading observation 

ψ with covariance 𝜎𝜓. This function is divided into two 

partial functions 𝑊𝑝 and 𝑊𝜓 that separately handle the 

position and heading update 

𝑊 (𝐩, 𝜎𝑝, 𝜓, 𝜎𝜓, 𝐱𝑡
(𝑖)

)

= 𝑊𝑝 (𝐩, 𝜎𝑝, 𝐱𝑡
(𝑖)

) 𝑊𝜎 (𝜓, 𝜎𝜓, 𝐱𝑡
(𝑖)

) 

The position likelihood function compares the position 

observation p with the position of the particle 𝐩𝑡
(𝑖)

 

𝑊𝑝 (𝐩, 𝜎𝑝, 𝐱𝑡
(𝑖)

) = p (𝐩|𝐩𝑡
(𝑖)

) 

where 𝑝(∙) is the probability density function of a normal 

distribution with mean 𝛍 = 𝐩𝑡
(𝑖)

 and covariance 𝜎𝑝. 

When calculating the angular difference △ 𝜓(𝑖) 

between a heading measurement ψ with the heading of 

a particle 𝜓𝑡
(𝑖)

, the wrap-around between 0 and 2π must 

be handled. This is accomplished by defining an angular 

difference function 𝐷(α1, α2) that yields the smaller 

angle between the two headings, which is in the interval 
〈−𝜋;  𝜋〉 

𝐷(α1, α2) = atan2(sin(α1 − α2),  cos(α1 − α2)),  

△ 𝜓(𝑖) = 𝐷 (𝜓, 𝜓𝑡
(𝑖)

) 

It assumes that particles with near-zero values of △ 𝜓(𝑖) 

must be close to the angle observation 𝜓, thus their 

weight should be high, and vice versa. The heading 

likelihood function 𝑊𝜓 performs this comparison by 

computing the probability density function p(△ 𝜓(𝑖)) of 

a normal distribution with mean 𝜇 = 0 and and 

covariance σψ.  

𝑊σ (𝜓, σψ, 𝐱𝐭
(𝐢)) = p(△ 𝜓(𝑖)) 

The weight update function W is then used to update the 

prior particle weights 𝑤𝑡
(𝑖)

 with respect to all available 

sensor measurements 

𝑤𝑡+1
(𝑖)

= 𝑤𝑡
(𝑖)

  ⋅ 𝑊 (𝐩F̂, 𝜎F̂, 𝜓F̂, 𝜎F̂, 𝐱𝑡
(𝑖)

) 

                      ⋅ 𝑊 (𝐩B̂, 𝜎B̂, 𝜓B̂, 𝜎B̂, 𝐱𝑡
(𝑖)

) 

     ⋅ 𝑊 (𝐩Â, 𝜎𝐴̂, 𝜓Â, 𝜎Â, 𝐱𝑡
(𝑖)

) 

However, not all three functions are always included in 

the calculation. The ArUco update 𝑊(𝐩Â,  … ) occurs 
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only if a marker is currently being detected and a pose 

estimate is available. The visual odometry updates 

𝑊(𝐩F̂,  … ) and 𝑊(𝐩B̂,  … ) are skipped, if a failure of the 

front or back T265 camera is detected, as described in 

section 4.1. This method of weight computation also 

allows us to incorporate additional sensor inputs into the 

estimation process. 

Finally, all particle weights are normalized to obtain 

a probability distribution such that  ∑ 𝑤(𝑖) = 1: 

𝑤𝑡+1
(𝑖)

=
𝑤𝑡+1

(𝑖)

∑ 𝑤𝑡+1
(𝑖)𝑁

𝑖=1

 

In the edge case that none of the updates are available 

the whole weight update step is skipped, and previous 

weights are used to compute the state estimate – the filter 

can estimate the state just based on the model of the 

system accurately only for a couple of seconds (mainly 

because the model is just approximate, and the true state 

of the system will deviate from this model). 

 

4.5 Resampling 

By repeatedly applying the prediction step (section 

4.3), the particles would gradually spread out over time, 

until only a few particles remain near the true system 

state. This is called the filter degeneracy problem [10]. 

To address it, the particles must be periodically re-

sampled. During this process, the particles with large 

weights are replicated, and particles with low weights 

are diminished. 

Resampling does not have to occur at every iteration 

of the particle filter. The metric of number of effective 

particles [10], [11] can be used to estimate the number 

of particles that meaningfully contribute to the filter 

estimate 

𝑁𝑒𝑓𝑓 =
1

∑ (𝑤𝑡
(𝑖)

)
2

𝑁
𝑖=1

 

The resampling is triggered when 𝑁𝑒𝑓𝑓 falls below  

a threshold 𝑁𝑡ℎ , which was chosen to be 𝑁/4. The new 

set of particles 𝐒𝑡+1 is generated using the systematic 

resampling method [25], which was selected based on its 

good algorithmic complexity 𝑂(N).  

 

4.6 State estimation 

The final step is to compute the state estimate 

 𝐱𝑡̂ = [ 𝐩𝑡̂  𝜓𝑡 ̂ ]
T

 from the current particle set 𝐒𝑡. The 

position estimate 𝐩𝑡̂ with variance 𝜎p̂ is obtained as 

weighted mean of positions of all particles 

𝐩𝑡̂ = ∑ 𝑤𝑡
(𝑖)

𝐩𝑡
(𝑖)𝑁

𝑖=1   

𝜎𝑝̂ = ∑ 𝑤𝑡
(𝑖)

(𝐩𝑡
(𝑖)

− 𝐩𝑡̂)
2

𝑁
𝑖=1   

The heading estimate 𝜓𝑡̂ is computed as weighted 

circular mean 

𝑎1 = ∑ 𝑤𝑡
(𝑖)

sin (𝜓𝑡
(𝑖)

)𝑁
𝑖=1 ,  𝑎2 = ∑ 𝑤𝑡

(𝑖)𝑁
𝑖=1 cos (𝜓𝑡

(𝑖)
)  

𝜓𝑡̂ = atan2(𝑎1,  𝑎2) mod 2𝜋 

When computing the weighted heading variance 𝜎𝜓̂, the 

particle heading 𝜓𝑡
(𝑖)

 and the heading estimate 𝜓𝑡̂ can 

not be directly subtracted, as this would introduce large 

values near the warp-around between 0 and 2π. Instead, 

the angular difference function D previously defined in 

chapter 4.4 is used 

σψ̂ =
∑ 𝑤𝑡

(𝑖)
𝐷 (𝜓𝑡

(𝑖)
, 𝜓𝑡̂)

2
𝑁
𝑖=1

∑ 𝑤𝑡
(𝑖)𝑁

𝑖=1

 

Afterwards, the filter continues with the next iteration. 

 

5 Evaluation 

The experimental evaluation is set up to mimic  

a simple warehouse inventory monitoring scenario. A 

map sketch of the testing environment and the desired 

trajectory is shown in Fig. 4. The environment consists 

of two rows of warehouse racks. The UAV takes off in 

front of marker 1. Then UAV continues its path heading 

towards RACK A. At the end of the RACK A, it does 

180 degrees turn towards RACK B and continues on the 

trajectory back to the starting point. An initial ArUco 

marker is placed in front of the UAV take off position. 

One primary ArUco marker is placed approximately in 

the middle of each rack (two markers in total – green 

markers in Fig. 4). The position of all markers in the 

environment is known accurately. In a real-world 

scenario, these markers will be spread throughout the 

environment and provide accurate local position 

information for the UAV. 

To obtain a reference position estimate, additional 

(secondary) ArUco markers (marked blue in Fig. 4) are 

positioned at known locations along the expected UAV 

flight path with focus on maximizing the number of 

visible markers over the main course of the flight. It is 

important to mention that only primary markers are used 

by the particle filter in the estimation process, the 

secondary markers are ignored. 
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The UAV performs a single test flight in this 

environment. During this flight, Ardupilot is configured 

to directly use the pose estimate from the front T265 

camera as position measurements via the mocap topic. 

We record the pose estimates from the front and back 

T265 cameras, ArUco pose estimates, Ardupilot velocity 

commands and the output of the internal Ardupilot 

Kalman filter pose estimator. The particle filter 

algorithm is then executed offline using the collected 

data. The filter parameters used in this test are 

summarized in Table 1. 

 

 

5.1 Results 

Results are displayed in Figs. 5, 6 and 8. In Fig. 5, the 

particle filter (blue line) is able to provide a continuous 

smooth estimate of position. When a primary ArUco 

marker is detected, the odometry measurement jumps 

towards the ArUco position (see green markers in 

Fig. 4). The global PF position estimate slowly con-

verges towards the ArUco position, instead of jumping 

immediately. The black dots represent the ground truth 

UAV position estimate obtained from the secondary 

 

 

ArUco markers. The red line shows the position esti-

mated by the Ardupilot EKF using the position 

measurements from the front T265 camera and IMU 

measurements. Figure 6 shows the estimated positions 

and headings after each PF update, as well as the 

covariance of the PF position estimate. Figure 8 shows 

the RMS error between the PF position estimate and the 

ground truth position from ArUco detections. 

 

 
Fig. 6. Results displayed in a single axis including X, Y, 

Z and YAW angle. Figure also includes variance of the 

PF. This result represents an ideal scenario – with no 

hardware failure. 

 

The only unexpected error which occurs is a bad Z 

axis estimate during landing. This is visible in Fig. 6. 

The issue arises because target velocity commands with 

a negative Z velocity are being sent even after the UAV 

is on the ground steadily, which causes particles of the 

PF to continue moving downwards. This continues for 

several seconds, until Ardupilot detects the landing and 

commands a zero velocity. This could be addressed by 

including the height sensor measurements into the PF 

state estimation process, which is expected to be 

implemented in future work.  

 

 

 

Fig. 4. Sketch of the testing environment. Green 

rectangles represent primary ArUco markers used by the 

PF update, blue rectangles are secondary markers used 

as ground truth position reference. The dashed line 

shows the desired flight trajectory of the UAV. 

Table 1. Particle filter parameters 

Parameter Value 

N Number of particles 2000 

Nth Resample threshold N/4 

σup Process model 

position covariance 
[0.125, 0.125, 0.125] m 

σuψ Process model 

heading covariance 
2.5 rad 

 

Fig. 5. Comparison of multiple position estimates. This 

result represents an ideal scenario – with no hardware 

failure. 
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The position estimation error (Fig. 8) is only com-

puted when reference ArUco markers are in sight of the 

RGB camera. Notice the spike the error (Fig. 7) around 

the 60 s mark. This is caused by the manoeuvre the UAV 

performs. The UAV performs 180 degrees turn and 

therefore no reference position data is available during 

this time and so the error is not computed. Also, no green 

markers are available as well and so only the odometry 

data is fused during this turn and so the inaccuracy 

spikes.  

 

 

Fig. 7. Error of the ArduPilot fusion mechanism in 

comparison to reference ArUco visual markers reference 

 

To compare the proposed PF algorithm with another 

sensor fusion solution, RMSE and position error 

between reference ArUco markers and the existing 

ArduPilot sensor fusion mechanism was also evaluated, 

its position error is displayed in Fig. 7. 

 

 

Fig. 8. RMS error of the particle filter in comparison 

to the reference from ArUco visual markers. This result 

represents the ideal scenario – with no hardware failure. 

 

Figures 7 and 8 start from around the 30th second of 

the flight. This is caused by the fact, that the reference 

ArUco markers are only visible after that time. 

Additional test to prove robustness and handling 

sensor malfunction was simulated by turning back 

odometry T265 camera off. The camera was turned off 

around timestamp 32 seconds and the average error rose 

to the value of 0.4202 m. 

To compare our results with similar state-of-the-art 

methods a selection of the current manuscripts has been 

done. To make the comparison as fair as possible, the 

manuscript in which authors perform similar experi-

ments are mainly based around visual odometry and 

ArUco markers.  

Table 2 shows the results of this comparison. Other 

state-of-the-art methods outperform our system from the 

standpoint of accuracy. However, shortcomings of these 

state-of-the-art methods (which were stated in the 

Related work section) have been overcome by our 

system. For example, the price of all cameras on UAV 

used in our system is lower than a single Velodyne 

LiDAR. As far as robustness is concerned, occlusion or 

disconnection of one camera sensor would not cause 

failure of the whole process. Opposed to the [16] or [18] 

where occlusion of markers or camera would cause 

malfunction of the system. Finally, sensor disconnection 

was addressed theoretically by using selective weight 

update and then it was also tested experimentally. 

 

The average execution time of the PF update function 

with 2000 particles is 15.485 ms. This measurement is 

based on the average of five runs of the particle filter on 

a Jetson Xavier NX processor, with other software 

components such as the camera driver and ArUco 

detection running concurrently. The relatively high 

execution time is due to the Python CPU-only 

implementation of the PF. Performance improvements 

could be achieved by re-implementing the filter in a 

compiled language (such as C++) and utilizing GPU 

acceleration to parallelize certain aspects of the 

computation [12]. Despite this, the filter still achieves 

satisfactory real-time performance. To substantiate this 

claim, we compare our method's execution times with 

those reported in related works that use onboard 

computers for computations. For instance, the ES-EKF 

method presented in [16] achieves approximately 20 ms 

per execution step on an i5-based platform. The VIO 

method based on AprilTag visual tags [15] executes in 

250 ms, with the final EKF fusion running at unspecified 

higher frequencies. Similarly, the work [18] uses Intel i5 

series processors, achieving execution times under 

100 ms. 

The results show that the developed particle filter 

localization method is able to achieve satisfactory 

accuracy with adequate updates rates. Unfortunately, the 

exact accuracy of the proposed system cannot be 

measured at the present time due to the absence of a very 

accurate reference localization system (such as VICON 

etc.). Instead of using a reference system with exactly 

measured accuracy, it was decided to use the camera 

pose estimate with the use of ArUco markers, which are 

widely used in various types of applications in robotics 

[26, 27]. Using ArUco markers as a reference produced 

satisfying results in terms of error - distance between 

reference and the PF estimate and RMSE. Putting 

Table 2. RMSE comparison 

Method RMS Error 

PF (Our method) 0.394 m 

MHE and ArUco  [17] 0.697 m 

VIO method based on 

AprilTag and EKF [15] 
0.137 m 

ES-EKF [16] 0.142 m 
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calculated errors aside, it is safe to assume that the 

proposed system was not “lost” during flights and there 

were no significant spikes in the pose estimation, which 

could cause a fatal crash of the UAV. The absence of 

need to have an extremely accurate (order of 

millimetres) localization system is based on the fact that 

an autonomous flying UAV must utilize a robust 

reactive navigation system which should prevent fatal 

crashes. What should not happen is the absolute loss of 

position estimate, which can happen due to hardware 

failures. This scenario is minimized by utilizing the input 

from multiple position estimation sensors. 

 

6 Conclusion 

This paper presented a localization method for  

a UAV based on a particle filter. The filter fuses position 

estimates from two visual odometry cameras and from 

visual detections of fiducial markers. The method was 

evaluated on data from real-life test flights, which shows 

that the filter achieves acceptable accuracy in a sense 

that it would not cause a serious accident. To conclude, 

the work meets its requirements stated at the start by 

authors, which is all in all considered as a step towards  

a fully autonomous solution for UAVs operating 

indoors. 

Future work will focus on deploying the developed 

algorithm to the UAV, to be used as the main real-time 

pose estimator. This will include evaluating the filter 

accuracy using an accurate position measurement 

system and performing multiple flights to mitigate 

stochasticity of the filter. The architecture of the particle 

filter allows for more sensor inputs to be included in the 

estimation process. Additionally, the Jetson Xavier NX 

GPU could be utilized to parallelize the particle filter 

computation, which would improve the speed and 

efficiency of the computation. 
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