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Measuring impulse response and nonlinear distortions  

using exponential frequency-modulated signals 

 
Yinjie Jia, Pengfei Xu 

 
Exponential Frequency-Modulated (EFM) signals, characterized by their exponentially changing instantaneous frequency, are 

valuable in radar, sonar, and communication systems. This paper explores the application of EFM signals for measuring impulse 

response and nonlinear distortions in electronic devices. The EFM signal testing method, which involves recording and 

analyzing the device's output in response to EFM signals, provides insights into amplitude-frequency, phase-frequency 

responses, and impulse response. The spectral density analysis reveals a 3 dB/octave decrease in high-frequency regions. An 

innovative measurement method is proposed, involving convolution with a time-reversed and amplitude-modulated EFM 

signal, simplifying traditional approaches. MATLAB simulations validate the method, highlighting its efficacy in 

comprehensive device performance assessment. 
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1 Introduction 

Exponential frequency-modulated (EFM) signals are 

a type of signal in which the instantaneous frequency 

changes exponentially with time. These signals have 

applications in various fields including radar, sonar, and 

communication systems.  

Farina proposed an idea for simultaneous measure-

ment of impulse response and nonlinear distortions 

using an EFM signal [1]. 
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Here, finitial and ffinal are the initial and final 

frequencies of the test signal (selected according to the 

measured frequency range), TEFM is duration of the test 

EFM signal in seconds. 

Equation (1) can be rewritten as follows: 
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From this, the total phase of the oscillation is obtained 
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and the instantaneous frequency 
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It follows from Eqn. (4) that f=finitial for t=0, and f=ffinal 

for t=TEFM. 

The EFM signal testing method is a technique used 

for measuring and analyzing the characteristics of 

electronic devices, systems, or circuits, involving the use 

of signals with exponentially changing frequency, 

known as EFM signals. This method is commonly 

employed to assess the device's response, frequency 

characteristics, nonlinear distortions, and more. In the 

EFM signal testing method, the device's output response 

is recorded by applying a signal with exponentially 

changing frequency, and further analysis is conducted on 

parameters such as amplitude-frequency response, 

phase-frequency response, and impulse response. This 

method can provide valuable information about the 

performance and characteristics of the device. 

 

2 Method 

2.1 Spectral density of the EFM signal 

Let us express the specific power of the EFM signal, 

see Eqn. (1), assuming that its instantaneous frequency 

changes slowly compared to its current value at any 

given moment. Then, the instantaneous power of the 

EFM signal can be associated with the average power of 

a sinusoidal signal over one period, which is independent 

of its frequency: 

𝑝(𝑡) =
𝑆𝑚

2

2
                                                                              (5) 

From the mathematical relationship between power and 

energy of a finite signal, the energy of the EFM signal 
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for a differentially small-time interval dt can be expres-

sed as 

𝑑𝐸(𝑡) = 𝑝(𝑡)𝑑𝑡 =
𝑆𝑚

2

2
𝑑𝑡.                                                   (6) 

Now let us take the derivative of the instantaneous 

frequency of the EFM signal and find the rate of change 

of its instantaneous frequency: 
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Its increment for a differentially small time interval dt is 
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Expressing (7) through (4), we obtain a relationship 

for the rate of change of the instantaneous frequency not 

in terms of time, but in terms of the current value of the 

instantaneous frequency itself: 
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Let us find an expression that approximately 

describes the spectral energy density of the EFM signal, 

using the rule of differentiating two parametric 

functions: 
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Further, we will substitute according to (9) into 

equation (10): 
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The frequency f, which serves as an argument for the 

energy spectral density of the EFM signal, is in the 

denominator of expression (11). It follows that when the 

frequency of the EFM signal doubles, the value of the 

function G(f) will decrease by a factor of 2. This 

corresponds to a 3 dB/octave (10 dB/decade) decrease in 

high-frequency regions. Note that the computation of the 

EFM signal's energy in the spectral domain gives 
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This yields the same result as integrating expression (5) 

over the duration of the EFM signal (from 0 to TEFM). 

The amplitude spectral density of the EFM signal can 

be calculated by taking the square root of expression 

(11). An example of the amplitude spectral density of the 

EFM signal with parameters finitial=11.7 Hz,  

ffinal=24 kHz, TEFM=43 s is shown in Fig. 1. 

 

 

Fig. 1. Theoretical amplitude spectral density of the 

EFM signal 

 

Thus, the main portion of the EFM signal's energy is 

concentrated in the frequency range from finitial to ffinal.  

In contrast to a measurement signal with linear 

frequency modulation (LFM), whose spectral density is 

uniform in a similar frequency range, the EFM signal 

exhibits a 3 dB/octave decrease in high-frequency 

regions [2]. 

 

2.2 Proposed method 

The measurement of the impulse response and 

nonlinear distortions of the device under test using the 

proposed method is carried out as follows: 

1. Initially, it is necessary to apply the EFM signal to 

the input of the device under test and record its output 

signal. 

2. Next, the convolution operation must be performed 

on the output signal with a specially prepared EFM 

signal, which is derived from the original EFM signal by 

time reversal and amplitude modulation. The resulting 

signal after convolution contains the impulse responses 

of the device under test. 

The measurement model is schematically illustrated 

in Fig. 2. 
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Fig. 2. Measurement model according to the proposed 

method (symbol * indicates the convolution procedure) 

 

It is worth noting that traditional indirect methods of 

measuring the impulse response (IR) of electronic and 

acoustic devices involve operations such as  

• transitioning from the time domain to the frequency 

domain 

𝑠𝑖𝑛(𝑡) → 𝑆𝑖𝑛(𝑗𝜔),    𝑠𝑜𝑢𝑡(𝑡) → 𝑆𝑜𝑢𝑡(𝑗𝜔), 

• determining the complex-valued frequency-dependent 

transfer coefficient of the device by dividing the spectral 

densities of the output and input signals: 

𝐾(𝑗𝜔) =
𝑆𝑜𝑢𝑡(𝑗𝜔)

𝑆𝑖𝑛(𝑗𝜔)
. 

Finally, calculating the amplitude-frequency 

response (AFR), phase-frequency response (PFR), and 

impulse response (IR) of the device based on the found 

transfer coefficient. In subsequent publications, analysis 

will be conducted on the additional processing proce-

dures of the output signal described in the proposed 

method, which represents the response of the tested 

device to the EFM signal: its convolution with the time-

reversed and amplitude-modulated original EFM signal. 

To verify the effectiveness of the above method, 

there is a MATLAB code that demonstrates how to 

evaluate the impulse response, frequency characteristics, 

and nonlinear distortion of testing and measuring 

electronic equipment using an EFM signal [3, 4]. 

 

Fig. 3. Testing and measuring electronic equipment 

using an EFM signal 

In this experiment, the code simulates an EFM signal 

and a measured signal with nonlinear distortion. It then 

calculates and plots the impulse response, frequency 

characteristics, and nonlinear distortion of the signals 

using the EFM approach. This code is a simplified 

illustration, and real-world scenarios may involve more 

advanced techniques and actual measurements. 

 

3 Conclusion 

EFM signal is commonly used to test and measure the 

characteristics of electronic devices, systems, or circuits, 

especially for evaluating their pulse response, frequency 

characteristics, and nonlinear distortion. By utilizing 

EFM signals, it is possible to acquire information about 

multiple parameters in a single test, thereby providing  

a more comprehensive assessment of device perfor-

mance. This signal exhibits linear growth or decay 

within a certain range, which offers certain advantages 

in testing, such as the ability to rapidly gather frequency 

response data. 
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