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NEURAL NETWORK-BASED DEFECT
DETECTION IN ANALOG AND MIXED IC
USING DIGITAL SIGNAL PREPROCESSING

Viera Stopjakova — Pavol Malosek — Vladislav Nagy ¥

The major goal of our work was to develop an efficient defect-oriented parametric test method for analog & mixed-signal
integrated circuits based on Artificial Neural Network (ANN) classification of a selected circuit’s parameter using different
methods of signal preprocessing. Thus, ANN has been used for detecting catastrophic defects in an experimental mixed-
signal CMOS circuits by sensing the abnormalities in the analyzed circuit’s response and by their consequent classification
into a proper category, representing either good or defective circuit. To reduce the complexity of neural network, Wavelet
Decomposition (WD) is used to perform preprocessing of the analyzed parameter. This brings significant enhancement
in the correct classification, and makes the neural network-based test method very efficient and versatile for detecting
hard-detectable catastrophic defects. Moreover, investigation of the possibility to utilize this approach also in detection of
parametric faults in analog circuits was the subject of our research as well. Therefore, a new methodology for neural network
based detection of parametric defects using Principal Component Analysis (PCA) of the analyzed circuit’s response has been
proposed. Since the training set selection plays a crucial role in achieving desirable classification results, we also propose a new
approach to this selection employing Convex hull (qhull) graphics algorithm. As it is shown in the experiments performed,
well trained neural network is not only able to detect the faulty devices but also identify the particular parameter deviation

in the respective circuit element.

Keywords: testing analog IC, defect detection, artificial neural networks, wavelet decomposition, principal component

analysis, convex hull algorithm

1 INTRODUCTION

In contemporary integrated circuits (IC), testing and
test evaluation are becoming very important but very
complex tasks. On one side, test efficiency and achieved
reliability of IC production are of utmost importance but
on the other hand, time and complexity of the test are
crucial aspects from test cost point of view. Thus, the
main goal of testing is to achieve desired IC reliability
in the shortest possible time to satisfy customer’s needs
with appropriate time to market and profit. The fact that
in recent IC designs mixed signal devices are rather com-
mon and the use of embedded IP cores is becoming very
popular, makes testing even more complicated. Another
test difficulty arises from deep sub-micron technologies
that bring specific defect mechanisms resulting in new
physical defects. Therefore, there is no stand-alone test
method that would provide satisfactory defect detection
level, and several test strategies have to be combined to-
gether to achieve this goal. Thus, complementary defect-
oriented test strategies have been developed and used, in-
cluding the power supply current (IDD) monitoring orig-
inally introduced for testing digital CMOS circuits [1-5]
as a method that requires dedicated test pattern gener-
ation with a significantly reduced number of test vectors
6, 7].

Many defect-oriented test methods might be consid-
ered as parametric since their decision criteria are based

on the analysis of analog, time continuous parameters,
ie supply current signal, output current, etc. However,
in defect-oriented test strategies, a meaningful threshold
needs to be defined to distinguish between good and bad
circuits. This is the crucial point of all threshold-based
test methods because improper setting of the pass/fail
limit may essentially reduce either yield, or quality of
the production. Moreover, most of the proposed defect-
oriented test methods suffer from a poor versatility. They
effectively cover a dedicated defect class only, either opens
or shorts, and their use for both analog as well as digital
circuits is strongly limited.

These difficulties make the application of artificial neu-
ral networks (ANN) in the field of analog testing very
appealing. Instead of a simple threshold decision used in
the most of the parametric methods, neural network ap-
proach offers sophisticated and continuous analysis of the
selected circuit’s parameter, and looks for abnormal be-
havior expected in a defective circuit. Some works using
ANN approach for detection parametric faults (undesired
deviations in resistance and capacitance values) in ana-
log circuits by evaluating different circuit responses have
been published [8-12]. However, catastrophic faults, such
as gate-oxide shorts or drain/source opens, are of the ut-
most importance from the reliability point of view. There-
fore, these physical defects commonly occurring in the
CMOS process were addressed in [13], where feasibility
of ANN-based identification of defective analog circuits

* Department of Microelectronics, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava, Slovakia;

E-mail Viera.Stopjakova@stuba.sk

ISSN 1335-3632 (© 2006 FEI STU



250 V. Stopjakovd — P. Malosek — V. Nagy: NEURAL NETWORK-BASED DEFECT DETECTION IN ANALOG AND MIXED IC ...

was introduced, and its feasibility experimentally verified
on a simple analog circuit example. Nevertheless, it has
been found out that in order to achieve satisfactory clas-
sification results, a significant number of input waveforms
in the training phase might be required even for small cir-
cuit sizes, and moreover, the network architecture might
be rather complex. This makes the training process rather
time consuming.

In this paper, we propose further preprocessing of the
signals before they are applied to the neural network that
offers significant network performance enhancement for
reduced training vector set size and the network complex-
ity. This substantial contribution has been proven by ex-
perimental results achieved on a mixed-signal test bench-
mark circuit of sufficient complexity. The neural network
is used for identification of a potentially defective circuit
by performing analysis of a selected circuit parameter,
which is sorted into two categories, good, and bad corre-
sponding to defect-free, and defective chips, respectively.
Wavelet decomposition is utilized to preprocess the neu-
ral network input signals. Then, significant results, sum-
marizing the efficiency enhancement in covering different
physical defects are presented. Consequently, comparison
of the previously achieved classification results (in both
time and frequency domains) to the results obtained using
wavelet analysis preprocessing is performed. In the second
part of our work, we investigate ANN approach ability to
detect and identify also parametric type of faults in an ex-
perimental analog circuit. Statistical method of so called
Principal Component Analysis is utilized to preprocess
the input signals before being applied to the network and
furthermore, and the Convex hull graphic algorithm is
used to find the proper training vector set. This could
drastically reduce the size of input layer of the neural
network and minimize the training set size. All circuit’s
current responses were gathered from HSpice circuit sim-
ulations. The selected artificial neural network structures,
algorithms and all the computations were performed in
MIDI toolbox, developed by authors, which is an exten-
sion of Neural Network Toolbox available in MATLAB
environment.

2 NEURAL NETWORKS AND
SIGNAL PROCESSING METHODS

2.1 Neural Networks background

The artificial neural networks are computing systems
that work in an analogy of the nervous system of the hu-
man brain, in which connections organize neurons into
networks. ANNs are computational structures that can
be configured by examples, and can improve their perfor-
mance by a dynamic adaptation process. The adaptation
process of an ANN is performed once, and only on a finite
subset of all possible input instances, also called the train-
ing set, which consists of input-output vector pairs. The
goal of ANN aimed for signal (pattern) classification is to
adapt itself to classify applied input vectors, representing

physical objects or events, into several categories. The
network selected for the classification of defective ana-
log circuits is a multilayer feed-forward neural network
trained by back-propagation [14-15].

Feed-forward ANN is a network of neurons organized
into layers: an input layer, one or more hidden layers, and
an output layer of neurons. The layer of hidden units al-
lows the network to extract important features from the
signal, and a number of hidden neurons are set empir-
ically to achieve the best network performance. Correct
neural network-based classification in the time domain re-
quires a significant number of input vectors, and a certain
complexity of the neural network. On the other hand, in
the frequency domain, the higher classification efficiency
even for smaller sizes of the training vector sets is ob-
tained [9]. Therefore, further preprocessing of the input
vectors applied to the neural network might significantly
enhance its performance, and reduce the complexity of
the network.

2.2. Signal processing methods

Wawelet Decomposition

As it was considered above, preprocessing of the net-
work input data can drastically simplify the network ar-
chitecture, improve its performance, and reduce the num-
ber of input vectors needed for the network training.
Wavelet transform provides high time resolution, and low
frequency resolution for high frequencies (low scales); and
low time resolution, and high frequency resolution for low
frequencies (high scales). That feature is ideal for prepro-
cessing of non-stationary signals [16].

Wavelet transform of a continuous-time signal z(t) is
defined by the following equation:

Wi(ap) = lal 2 /WW(?)dt (1)

where function ¢(t) is the so-called wavelet or mother
wavelet, defined as

dastt) = lal o (20). @)
Coefficients a, and b define degree of scaling, and time
shift of the mother wavelet 1 (t), respectively. The wavelet
coefficients W, (45 give a measure of similarity between
shifted, and scaled mother wavelet with an input signal
x(t). Calculation of the wavelet coefficients at every scale
& position is a very computationally expensive job. To
avoid this, one can choose dyadic (discrete) sampling,
which leads to a discrete wavelet transform. Wavelet anal-
ysis in its discrete form assumes the following sampling
points: a,, = 2™, by = amnT = 2™nT, where T is
sampling period, and m, n are integers. By applying
dyadic sampling, Equation (1) yields its discrete form

W(nz,n) = 27% Zx(k)w(Qimk - TL) (3)

k
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Fig. 1. Wavelet decomposition of a signal into approximations (A), and details (D)

where the discrete wavelet (k) is a sampled version of
a continuous 1 (t), and x(k) is a discrete signal.

Discrete wavelet transform, where a signal is decom-
posed into so-called approximations and details, can be
realized by the multi-rate filter bank [17]. Approximations
represent low frequency signal content, and details cor-
respond to high frequency components of the processed
signal. Each set of the frequency bands of a signal can be
decomposed further into other levels of approximations &
details. One can construct full binary decomposition tree,
known as a wavelet packet decomposition tree, depicted
in Fig. 1. In our work, we use a wavelet decomposition
tree, where the higher bands (details) become a part of
the output while only the lower bands (approximations)
are further split into two bands depicted in bold.

The proper choice of the mother wavelet plays a cru-
cial role in the signal preprocessing. Several families have
been proven to be useful in signal and image process-
ing (Daubechies, Biorthogonal, Haar, Shanon, etc.). Each
family has specific properties which make them suitable
for certain applications. Haar wavelet has good time lo-
calization but poor frequency localization. On the other
hand, the Shanon wavelet has poor time localization, but
its frequency localization is good because it has the spec-
trum of an ideal bandpass filter. There are orthonormal
wavelets that are between these two types, giving ac-
ceptable localizations both in time, and frequency [17].
Therefore, in our work, db2 mother wavelet from the
Daubechies family, which is orthonormal, was used since
wavelet decomposition using this mother wavelet gives
the most specific wavelet coeflicients across a wide range
of the considered defects.

Principal Component Analysis

Another method that might be used to preprocess in-
put signal is Principal component analysis. PCA is proba-
bly one of the oldest and best known techniques of multi-
variate analysis that reveals the natural structure of data
and reduces dimensionality. Recently, PCA is widely used
as a visualization tool for multivariate data sets, as a
method for feature extraction, and as a preliminary trans-
formation applied to data before the other analysis tools
like clustering and classification are utilized [18, 19]. Main

idea of PCA is to reduce dimensionality of multivariate
data set while retaining as much variability at the output
as possible. It offers linear projection from n-dimensional
space into p-dimensional space, where n > p. The first
principal component is one-dimensional (1-D) linear sub-
space, where the variance of data is maximal. The second
principal component is the direction of maximal variance
in the space orthogonal to the first principal component,
and so on [20].

2.3. Data normalization

Before feeding the neural network, all input data
should be normalized. Data normalization is to avoid
large changes in the magnitude of the input signal that
may differ by several orders. These variations could rep-
resent an undesired domination, and should be removed
though a normalization process. In our work, we have
normalized the mean and the standard deviation of all
processed data according to the following set of equa-
tions:

, T, —T
= 4
Ty S ) ( )

Y (i - T)2
s = == (5)

Y@
Tl 9 (6)

T =

where 2 is the normalized form of input vector element
x;, and N is the number of input vector elements. Data
normalization avoids undesired large changes in the sig-
nal magnitude, and amplifies differences between input
vectors that helps learning algorithms to converge.

2.4. Neural Network simulation setup

In order to investigate the influence of the network
complexity to its classification efficiency, the number of
neurons in hidden layer (hidden units), representing dif-
ferent network topologies and complexity, was determined
empirically in the range from 2 to 22 with step of 2. Each
training set experiment with the given network topol-
ogy was repeated 10 times with different initial values
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Fig. 2. Block diagram of the designed DAC.

of weight coefficients to average over variations in the
network performance due to initial conditions.

There are two experimental circuits with different de-
fect types analyzed and tested in this paper, and the par-
ticular neural network simulation setup depends on the
respective experiment. Thus, in case of catastrophic de-
fects detection in an experimental D—A converter, the fol-
lowing setup was used: The number of the output neurons
was arbitrarily set to two, where the combination of their
logic values determines the respective classification cate-
gory — good or bad one. The decision boundaries for the
output neurons were set to 0.25, and 0.75 for logic zero,
and logic one, respectively. It means that outputs equal
to or greater than 0.75 are rounded toward logic one, and
outputs equal to or smaller than 0.25 are rounded toward
logic zero. If at least one of the network outputs is in the
range from 0.25 to 0.75, the respective input vector is not
classified. This determines classification criteria for the
respective category.

In case of second experimental circuit, which was used
as a test vehicle for evaluating the effectiveness of the
neural network in detection of parametric defects in ana-
log IC, the network consisted of 32 neurons in the input
layer, and 2 or 5 neurons in the output layer, depend-
ing on the particular experiment. Five output neurons

are needed if targeting classification of the circuit output
into five output classes, where also direction of the partic-
ular parameter deviation can be detected. The decision
boundaries for the output neurons were set to 0.49 and
0.51 for logic zero and logic one, respectively.

Due to the property of different learning algorithms, in
which the network does not converge to the same results
and the respective algorithm can lose the local minimum
of performance function, it is highly desirable to perform
multiple network learning/simulation runs.

3 EXPERIMENTAL CIRCUITS AND DEFECTS

In our research work, efficiency of the proposed test
approach in detection of two major defect classes has
been investigated: a) catastrophic defects that represent
physical imperfections and impurities originated in the
technology used, such as bridgings, opens, and gate-oxide
shorts; b) parametric faults represented by an undesired
deviation in a particular circuit parameter, eg resistance
or capacitance. Thus, a proper circuit example has been
designed for each considered defect class, then several
most frequent catastrophic or parametric defects were
injected into the respective circuit, and selected circuit
parameters were analyzed by the artificial neural network.
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Fig. 7. Sallen-key band pass filter example.

3.1. Mixed-signal circuit with catastrophic de-
fects

To evaluate the feasibility and efficiency of the proposed
approach in detecting catastrophic defects in mixed-
signal circuits of real complexity, an 8-bit current steering
digital-to-analog converter (DAC), designed in a standard
0.35 um CMOS process, has been selected and used as
the circuit under test (CUT). The DAC, shown in Fig. 2,
has a 4 + 1 4+ 3 segmented architecture: the first four
most significant bits (MSB) are linearly decoded, then
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Fig. 6. Effect of a GOS defect on the DAC output current.
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Fig. 8. Output voltage and supply current responses.

the 3rd bit is also linearly decoded, and the three least
significant bits (LSB) are binary weighted [20]. The com-
plementary output scheme was used to achieve a high
update rate, where the current sources are continuously
supplying current into either Ioyr or NIour rail. The
necessary current switches are placed outside the cur-
rent source matrix. The analog part of the DAC, mainly
formed by the current source matrix, consists of almost
600 MOS transistors; and its digital counterpart is com-
posed of more than 2000 transistors.
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Selection of the circuit’s parameter to be analyzed
by the neural network is the crucial point of the effec-
tive defect detection. Therefore, a parameter giving the
most valuable information about a possible defect present
should be selected. Given by the nature of the current
steering DAC, the converter output current, which is very
sensitive to possible defects, was the choice for the an-
alyzed parameter. Therefore, the DAC output current
obtained under different fault-free and faulty conditions
were selected as the proper circuit’s response and classi-
fied by the neural network. For this purpose, the input
code of the 8-bit DAC was switched from the state of all
logic zeros to the state of all logic ones, making all the
current switches change their states and an eventual de-
fect present in the circuit most observable. The applied
input data and the respective Ioyr & NIpyur current
responses of the converter (sampled later for further pro-
cessing) are shown in Figs. 3 and 4, respectively. The neu-
ral network input waveforms were analyzed in time do-
main, in frequency domain using fast Fourier transform,
and finally by preprocessing using wavelet decomposition.

As it was already mentioned, ANN can conveniently
classify applied input waveforms (that might be any cir-
cuit’s parameter reflecting a present defect) into proper
categories, good and bad, corresponding to defect-free
and faulty circuits, respectively. Before the neural net-
work is able to classify an unknown signal, the adaptation
(learning) process of the network, performed on a training
set of waveforms, has to be carried out. The training set
represents a subset of all possible instances, and it con-
tains waveforms from both considered categories (bad and
good). Therefore, both types of input vectors are needed
for this phase.

In reality, the behavior of good circuits might vary in
a certain range, given by technology parameters’ devia-
tions and different temperature conditions, also fault-free
output current responses should represent these natural
variations. Therefore, good waveforms were obtained by
varying temperature, and transistor model parameters.
Temperature was changed within the range from 30°C

R1 value sweep (4.7 kQ + 5 %)

Class 0
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Class 2

Number of Vectors
(98]
S
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3000
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Fig. 9. R1 value histogram with the output classes definition.

to +120°C, and five different transistor models: one typ-
ical, and four worst cases (power, speed, zero, one worst
cases) were used.

Faulty circuit responses, reflecting faulty behavior of
the tested circuit, were obtained by injecting basic MOS
transistor faults into the DAC circuit. Following most sig-
nificant catastrophic faults were used: DOP, SOP (drain
open, source open), GDS, GSS, DSS (gate-drain short,
gate-source short, drain-source shorts), and GOS (gate-
oxide short). The value of the resistors in open fault mod-
els was changed within the range from 1K to 10 M,
in GOS faults within the range from 30KQ to 150K,
and in short faults they varied from 1 K to 100 KQ2. The
faults were injected randomly, always only single fault at
a time. As a result, we obtained the total number of 590
IoyT waveforms (90 good, and 500 defective). Examples
of good and defective Ioyr waveforms, sampled to 32
samples (with 0.25 ns sampling period), are depicted in
Figs. 5 and 6, respectively.

3.2. Analog circuit example with parametric
faults

In our second experiment, a simple analog integrated
circuit, Sallen-key bandpass filter, shown in Fig. 7, has
been used as an experimental circuit under test, in order
to investigate feasibility of the ANN in identification of
different parametric faults. Since parametric faults are
associated with passive components only, an active analog
filter, most usually consisting of a few such devices and
frequently used in IC, has been considered. The filter
was excited by a pulse input signal. The output voltage
and supply current responses, depicted in Fig. 8, were
mathematically preprocessed and analyzed by the neural
network consequently. As a result, the analyzed signal
was classified by the network to a respective category
representing either good or faulty state of the circuit.

Two parametric faults were considered and introduced
into the circuit, namely into devices’ R1 and C1, where
resistance and capacitance values have been varied, re-
spectively. To keep the simulation close to the real chip

C1 value sweep (10 nF £ 10 %)
60
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50 ¢
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Fig. 10. Considered output classes for C1 value.
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Fig. 12. Classification efficiency for the DAC using wavelet signal
decomposition.

conditions, parameter deviations were produced by Gaus-
sian sweeping of the respective parameter value. This
approach counts with randomness and probability dis-
tribution factors, and the resulting histogram for R1
value and C1 parameter values is depicted in Figs. 9 and
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Fig. 13. PCC versus number of hidden neurons (network complex-
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10, respectively. Consequently, the following five output
classes have been defined: class 0 representing good cir-
cuits (value of R1 and C1 is within the tolerance range
of £5% and +10%, respectively), class I representing
circuits with the value of R1 < —5% from the reference
value, class 2 for the value of R1 > +5% from the ref-
erence value, and class 3 and class 4 for the value of C1
outside the range of £10 % from the nominal value (Figs.
9 and 10).

4 EXPERIMENTAL RESULTS

Experiment A:

In the first experiment, the efficiency of the approach
in detection of catastrophic defects present in the 8-bit
DAC has been investigated. The converter output cur-
rent was selected as the proper parameter analyzed and
classified by the neural network. The total number of
590 output current waveforms (90 good, and 500 faulty)
was generated. Randomly selected subsets of 20, 40, and
340 patterns formed the network training sets. Figure 11
shows the average percent correct classification (PPC) of
the network for the given sizes of the training set, achieved
for different signal preprocessing domains. Each bar rep-
resents the average defect detection results for ten differ-
ent network adaptations with a given network topology
with 2, 10, and 22 hidden neurons.

The obtained results indicate that a high efficiency of
the neural network correct classification can be achieved
even for complex mixed-signal circuits if a proper circuit
parameter is analyzed, and sufficient training of the net-
work is performed. Wavelet preprocessing of the input sig-
nal significantly improves the network performance while
its complexity can be reduced. Very high percent correct
classification over 90 % for 340 training vectors, and only

- Second principal component
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—— convex
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—— convex
o class2
—— convex
o class 3
—— convex
class 4
convex

-60 -40 -20 0 20 40 60

First Principal Component

Fig. 14. PCA with 15¢ versus 2" principal component plot.
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Table 1. Training sets composed of all class vectors.

ANN output Training set size

category 20 43 87 185 740
good 8 16 32 75 300
bad (class 1) 4 8 16 32 128
bad (class2)| 4 9 18 36 144
bad (class 3)| 2 5 10 20 80
bad (class4)| 2 5 11 22 88

2 hidden units can be achieved. Wavelet decomposition
of the signal significantly enhances the network correct
classification ability, particularly for small training set
sizes (20 vectors). Average defect detection results as a
function of the number of training set vectors for wavelet
analysis is shown in Fig. 12.

Experiment B:

As it was already mentioned, efficiency of the ANN
in covering different parametric faults present in a pure
analog circuit has been investigated in the second experi-
ment. The total number of 1869 vectors and several sizes
of the training set (20, 43, 87, 185 and 740) have been
used. Each training set was composed of both good and
bad responses, where the defective subset contained vec-
tors from all defective classes (Tab. 1).

0,
100 PCC (%)
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80t
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60
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50 i L L L L L L |
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Fig. 15. Correct classification versus network complexity (using
PCA data processing).

The results obtained prove the neural network capa-
bility to successfully face complicated signal classification
problems. Figure 13 shows the classification results ob-
tained for 5 output neurons, where the following output
vectors were used for the respective class representation:
[L0000],[01000],[00100],[00010], 0000 1].
The experimental results show the need for a rather com-
plex network, where the hidden layer size composed of 2
to 4 neurons is not enough to achieve satisfactory level of
PCC. The crucial problem is a sophisticated training set

selection, since PCC higher than 99 % was achieved for
rather large training set sizes over 340 vectors that rep-
resents more than 18 % of all classified circuit responses.
To solve this problem there are generally two possibili-
ties. One is to move to another domain eg frequency do-
main and use discrete Fourier transformation as a data
transform procedure. However, for non-stationary signals
Short Time Fourier Transform or Wavelet decomposition
can be more useful due to good localization in time prop-
erty. Another way to the training set minimalization, with
still acceptable network classification performance, is to
use some feature extraction method to present the data
to the neural network from statistical point of view.

Therefore, Principal Component Analysis has been
used as a multivariate analysis to reveal the natural struc-
ture of data and reduce size of the network training set.
Figure 14 shows all circuit responses after applying PCA
with first versus second principal component plotted. Re-
sulting convex polygons, displayed with lines represent
the ideal training set selected algorithmically using PCA.
Each polygon represents conver hull for each output class
and therefore, it creates the respective class outer border
in 2D space.

Total size of the optimal training set determined by
PCA algorithm is 69 vectors that represent less than 4 %
of the overall 1869 classified responses. This is an excellent
result since it proves that PCA can minimize the train-
ing set and make the network training process very short
while still achieving very high network classification per-
formance. Average PCC results achieved with the men-
tioned training set selection is shown in Fig. 15. However,
the necessity to use more complex neural network (num-
ber of neurons in the hidden layer) might be observed.
This behavior is due to the input vector dimensionality
reduction, which leads to less input neuron connections
and therefore, also to fewer variables to iterate for learn-
ing algorithms.

5 CONCLUSIONS

An efficient neural network-based test approach to de-
tection both catastrophic physical defects as well as para-
metric defects in analog and mixed-signal circuits using
different methods of digital signal processing is proposed.
Two circuit examples have been used to show that arti-
ficial neural networks are able to identify defective cir-
cuits. Nevertheless, if certain classification efficiency is
expected, the network training may be a time consuming
job that requires a rather large number of training patters
even for small circuits. The results obtained through our
experiments prove that preprocessing of the analyzed sig-
nal can drastically reduce the number of input patterns
applied to the neural network. The presented approach
offers the excellent correct classification above 98simple
network topology. In our first experiment, the training
vectors were selected randomly, and it is important to
note that the network effectiveness might be affected by
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the improper training process. Therefore, a novel method-
ology of the optimal training set selection for feed-forward
neural networks using PCA and ghull algorithms is pro-
posed. This improvement in the network training and
data preprocessing brings significant enhancement in the
network correct classification ability since the neural net-
works categorize the analyzed circuit’s response with the
excellent accuracy over 99 %.

The results achieved indicate the possibility to use this
approach as an effective and flexible test method, espe-
cially in analog and mixed-signal testing, where conven-
tional test methods are either insufficient or inapplicable.
This is exactly the area where the neural network ap-
proach seems to be a good alternative, easily adaptable
for an arbitrary circuit parameter (eg, output voltage,
output current, etc). However, in real testing, availabil-
ity of a sufficient number of training vectors might be a
problem. This could be avoided by employing neural net-
work structures able of signal classification without the
necessary learning process, eg self-organizing maps that
will be also subject of our interest in the future.
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