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FERROMAGNETIC HYSTERESIS MODELLING WITH
ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM

Mourad Mordjaoui *— Mabrouk Chabane ™

— Bouzid Boudjema **

Hysteresis modeling is an important criterion in defining the electromagnetic properties of magnetic materials. Many
models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this
paper a new qualitative hysteresis model for the ferromagnetic core is presented, based on the function approximation
capabilities of an adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network
adaptive capabilities and the fuzzy logic qualitative approach can restore the hysteresis curve with a little RMS error.
Therefore, the accuracy of the model developed is good as the quality of the data used.
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1 INTRODUCTION

Computation of electrical machines requires a deep
knowledge of material characteristics used in their con-
struction. Many researchers were interested in the area
of magnetic hysteresis modeling. The Preisach model was
the first mathematical hysteresis model developed to de-
scribe the relationship between the magnetization M and
the magnetic field H [1], then Jiles and Atherton pre-
sented a physical model [2]. Artificial intelligence has also
been applied to the modeling of magnetic hysteresis and
parameters identification of these models such as neural
network and genetic algorithm [3-13]. Like neural net-
works, fuzzy logic can be conveniently used to approx-
imate any arbitrary functions [14-16]. Neural networks
can learn from data but knowledge learned can be diffi-
cult to understand. Models based on fuzzy logic are easy
to understand but they do not have learning algorithms;
learning has to be adapted from other technologies. A
Neuro-Fuzzy model can be defined as a model built us-
ing a combination of fuzzy logic and neural networks.
Recently, there has been a remarkable advance in the de-
velopment of Neuro-Fuzzy models, as it is described in
[17-19]. One of the most popular and well documented
Neuro-Fuzzy systems is ANFIS, which has a good soft-
ware support [20]. Jang [21-23] present the ANFIS archi-
tecture and application examples in modeling a nonlinear
function, dynamic system identification and chaotic time
series prediction. Given its potential in building fuzzy
models with good prediction capabilities, the ANFIS ar-
chitecture was chosen for modeling magnetic hysteresis
in this work. In this paper, the Jiles-Atherton hysteresis
model was introduced and a neuro-fuzzy system was pro-
posed to modeling the ferromagnetic material hysteretic
behavior. The proposed approach will be presented in the
following sections.
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2 JILES-ATHERTON HYSTERESIS MODEL

The Jiles-Atherton model is a physically based model
that includes the different mechanisms that take place at
magnetization of a ferromagnetic material. The magne-
tization M is represented as the sum of the irreversible
magnetization M, due to domain wall displacement and
the reversible magnetization M., due to domain wall
bending [2]. The anhysteretic magnetization Mg, in (2)
follows the Langevin function [3], which is a nonlinear
function of the effective field:

H.,=H+alM , (1)

M,y = M, (coth(%) - Hi) 2)

The rate of change of the reversible component is propor-
tional to the rate of the difference between the hysteretic
component and the total magnetization [4]. Combining
the irreversible and reversible components of magnetiza-
tion, the differential equation for the rate of change of the
total magnetization is given by:

My, — M c dMy,
c+1 dH

M1
dH ~ 1+c — o(My, — M)
Ko

3)

Before using the J-A model, five parameters must be

determined:

e «: a mean field parameter defining the magnetic cou-
pling between domains and all types of magnetic
anisotropy in the material, and is required to calculate
the effective magnetic field, H. (1) composed by the
applied external field and the internal magnetization.

e Mj: saturation magnetization.

e a: Langevin parameter.
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Fig. 1. ANFIS architecture

These two parameters defined a Langevin function needed

in the equation describing anhysteretic curve.

e k: parameter defining the pinning site density of do-
main walls. It is assumed to be the major contribution
to hysteresis.

e c: parameter defining the amount of reversible mag-
netization due to wall bowing and reversal rotation,
included in the magnetization process.

0 is a directional parameter and takes +1 for increasing

field (dH/dt > 0) and —1 for decreasing field (dH/dt <

0).

3 ADAPTIVE NEURO-FUZZY
INFERENCE SYSTEM (ANFIS)

An adaptive Neuro-Fuzzy inference system is a cross
between an artificial neural network and a fuzzy infer-
ence system. An artificial neural network is designed to
mimic the characteristics of the human brain and consists
of a collection of artificial neurons. An adaptive network
is a multi-layer feed-forward network in which each node
(neuron) performs a particular function on incoming sig-
nals. The form of the node functions may vary from node
to node. In an adaptive network, there are two types of
nodes: adaptive and fixed. The function and the grouping
of the neurons are dependent on the overall function of the
network. Based on the ability of an ANFIS to learn from
training data, it is possible to create an ANFIS structure
from an extremely limited mathematical representation
of the system.

3.1 Architecture of ANFIS

ANFIS is a fuzzy Sugeno model put in the framework
of adaptive systems to facilitate learning and adapta-
tion [18]. Such framework makes the ANFIS modeling
more systematic and less reliant on expert knowledge. To
present the ANFIS architecture, we suppose that there
are two input linguistic variables (z,y) and each variable
has two fuzzy sets (A1, A2) and (B, B2) as is indicated
in Fig. 1, in which a circle indicates a fixed node, whereas
a square indicates an adaptive node.

Then a Takagi-Sugeno-type fuzzy if-then rule could be
set up as:

261

Rule i: If (x is A;) and (y is Br) then (f;

fi are the outputs within the fuzzy region specified by
the fuzzy rule. p;, ¢; and r; are the design parameters
that are determined during the training process.

Some layers of ANFIS have the same number of nodes,
and nodes in the same layer have similar functions. Out-
put of nodes in layer-1 is denoted as O}, where 1 is the
layer number and ¢ is the neuron number of the next
layer. The function of each layer is described as follows:
e Layer 1: In this layer, all the nodes are adaptive nodes.
The outputs of layer 1 are the fuzzy membership grade
of the inputs, which are given by:

=piT+qiy +7i)

O} = jua, (), (@)
Ozl = HKB;_» (y) ) (5)

where pa, (), pup,_,(y) can adopt any fuzzy membership
function. For example, if the bell shaped membership
function is employed, p4,(z) is given by:
1

b;
1+ { (2527}
where a;, b; and ¢; are the parameters of the membership
function, governing the bell shaped functions accordingly.
e Layer 2: Each node computes the firing strengths of

the associated rules. The output of nodes in this layer can
be presented as:

07 = w; = pa, ()ps, (), (7)

e Layer 3: In this third layer, the nodes are also
fixed nodes. They play a normalization role to the fir-
ing strengths from the previous layer. The outputs of
this layer can be represented as:

HA; (:E) = (6)

i=1,2.

0%}

O} =w; = ———,
w1 + wo

K2

i=1,2 8)

which are the so-called normalized firing levels.

e Layer 4: The output of each adaptive node in this layer
is simply the product of the normalized firing level and
a first order polynomial (for a first order Sugeno model).
Thus, the outputs of this layer are given by:

e Layer 5: Finally, layer five, consisting of circle node
labeled with S'. is the summation of all incoming signals.
Hence , the overall output of the model is given by:

szfl -

From the architecture of ANFIS, we can observe that
there are two adaptive layers the first and the fourth.
In the first layer, there are three modifiable parameters
{a;,bi,cr}, which are related to the input membership
functions. These parameters are the so-called premise pa-
rameters. In the fourth layer, there are also three modifi-
able parameters {p;, q;,rr}, pertaining to the first order
polynomial. These parameters are so-called consequent
parameters [21,22].

1 1szz

10
oLt (10)
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Fig. 2. ANFIS training algorithm for adjusting production rules
parameters

3.2 Learning algorithm of ANFIS

The task of training algorithm for this architecture is
tuning all the modifiable parameters to make the ANFIS
output match the training data. Note here that a;,b;
and ¢; describe the sigma, slope and the center of the
bell MF’s, respectively. If these parameters are fixed, the
output of the network becomes:

f=—2 i+ —1p. (11)

w1 + w2 w1 + w2

Substituting Eq. (8) into Eq. (11) yields:

f=wifi+wafs. (12)

Substituting the fuzzy if-then rules into equation (12), it
becomes:

f=wilpiz+qy+r) +D(p2x+qy+re). (13)

After rearrangement, the output can be expressed as:

f=@z)p1 + @1y)q + @1)r

+ (W2)p2 + (W2y)q2 + (@2)r2 . (14)

This is a linear combination of the modifiable parameters.
For this observation, we can divide the parameter set S
into two sets:

S =51 %5 ,

S = set of total parameters,

S1 = set of premise (nonlinear) parameters,

Sa = set of consequent (linear) parameters,

@: Direct sum.
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For the forward path (see Fig. 1), we can apply least
square method to identify the consequent parameters.
Now for a given set of values of S;, we can plug training
data and obtain a matrix equation:

AO =y (15)

where © contains the unknown parameters in S;. This
is a linear square problem, and the solution for ©, which
is minimizes ||AO = y||, is the least square estimator:

0" = (ATA) ATy (16)
we can use also recursive least square estimator in case of
on-line training. For the backward path (see Fig. 1), the
error signals propagate backward. The premise parame-
ters are updated by descent method, through minimizing
the overall quadratic cost function

N

[y(k) — 9k, ©)]*
k=1

J(©) = (17)

N =

in a recursive manner with respect ©(gz). The update

of the parameters in the i*" node in L' layer can be
written as:
~ ~ OE(k)
0;(k) = 0F(k — 1) + ——~ 18
(k) (k—=1) 96 (k) (18)

where n is the learning rate and the gradient vector

Ot E 05
e e T (19)
o0L 9oL

0%r,; being the node’s output and ey, ; is the backpropa-
gated error signal. Figure 2 presents the ANFIS training
algorithm for adjusting production rules parameters.

4 APPROXIMATING MAGNETIC HYSTERESIS
4.1 Simulation

The differential equation (3), which in its original form
has derivatives with respect to H , was reformulated into
a differential equation in time by multiplying the left and
the right sides by dH/dt, thus resulting in:

dM 1 dH = Ma—M L dM,,
dt_l—i-cdt%—a(Man—M) 1+c dt

. (20)

This reformulation allows for the determination of mag-
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Fig. 3. (a) — Normalized magnetic field versus time (b) — Normal-
ized magnetic induction versus time

netization by use of Runge Kutta method in Matlab envi-
ronment. To calculate the magnetic flux density B from
M and H, the following constitutive law of the magnetic
material property is used.
B = pH = pop, H = po(H + M) . (21)
Where g = 47 x 1077 (H/m) is the permeability of free
space and p, is the relative permeability.
The B(H) curve result of simulation of the Jiles-

Atherton model will be used as ’experimental data’ to
be approximate by proposed Neuro-Fuzzy model.

4.2 Proposed model

In this section, the learning ability of ANFIS is verified
by approximating a hysteresis of magnetic material. The
data set used as input/output pairs for Anfis were gener-
ated by Jiles Atherton model for ferrite core described in
[24] with sinusoidal magnetic field as an input H(¢) and
magnetic field B(t) as shown in Fig. 3a and Fig. 3b.

Our purpose is to predict the magnetic hysteresis cy-
cles using 12 candidate inputs to ANFIS : B(t — i) for
i=1:5,and H(t—j) for j =1:7. Converted from the
original data sets containing 422 [H (t) B(t)] pairs.

In the first time, we suppose that there are two inputs
for ANFIS and we have to construct 35 ANFIS models
(5 x 7) with various input combinations, and then se-
lect the one with the smallest training error for further
parameter-level fine tuning. In Table 1 we can see that
the ANFIS with B4 and H1 (in red) as inputs has the
smallest training error, so it is reasonable to choose this
ANFIS for further parameter tuning. Note that each AN-
FIS has four rules, and the training took only one epoch
each to identify linear parameters. Let us note that the
computing time for selecting the good model is 5.03882 s.

Table 1. Training and checking error for all models.

Model

Training error

Checking error

B1 H1
B1 H2
B1 H3
B1 H4
B1 H5
B1 H6
B1 H7
B2 H1
B2 H2
B2 H3
B2 H4
B2 H5
B2 H6
B2 H7
B3 H1
B3 H2
B3 H3
B3 H4
B3 H5
B3 H6
B3 H7

0.00003362751798
0.00959687404061
0.01656339121598
0.02303817217175
0.02955482263776
0.03592909843370
0.04234687502187
0.00003454986338
0.01326113905508
0.01816578945136
0.02421933820921
0.03048223398339
0.03631870393183
0.04206553808394
0.00002714382722
0.01125282874177
0.02519247143986
0.02625830973011
0.03217201528397
0.03760746620563
0.04262648998736

0.00004197186908
0.01093765284221
0.01464519925359
0.01875072447019
0.02737874889745
0.04070823636094
0.06046603382639
0.00004235702777
0.02596375295441
0.01960397432510
0.02017463297709
0.02534746376602
0.03506607375679
0.05091660789003
0.00002969609241
0.02760786485845
0.05013635694792
0.02661118233221
0.02597623870064
0.03182176441713
0.04393612682667

|B4 H1

0.00002151667942

0.00002941797497|

B4 H2
B4 H3
B4 H4
B4 H5
B4 H6
B4 H7
B5 H1
B5 H2
B5 H3
B5 H4
B5 H5
B5 H6
B5 H7

0.00946786265086
0.02265729876255
0.03575210537745
0.03458484870981
0.03983270473694
0.04433645678973
0.00002820696869
0.00868269284842
0.01579989242722
0.02249300689915
0.02931964087956
0.03616365495642
0.04295327484075

0.01284544986247
0.05706885484696
0.07229359571869
0.03288908255780
0.03162888402750
0.03955927980351
0.00003255142152
0.00825133809164
0.01323395619449
0.01945532082103
0.03153342378357
0.04883984122394
0.07317450661150
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After selection of the good and adapted model, we
made train the network 100 epochs, for this purpose we
have used 211 pairs as training data and 211 pairs for
checking, shown in Fig. 3.
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Fig. 4. Data distribution
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The number of MFs assigned to each input of the
ANFIS was set to two bell type, so the number of rules is
04. The training was run for 100 iterations, the network
performance were evaluated on the checking set after ev-
ery iteration, by calculating the root-mean-square errors
(RMSE):

Zf:l(yk — Ur)
K

where k is the pattern number, £ =1,..., K. The RMSE
was also evaluated on training data set in every itera-
tion. The optimal number of iteration was obtained when
checking RMSE has reached its minimum value 0.01019
after 10 epochs, see Fig. 5.

RMSE = (22)

Figure 6 depicts the initial and final membership func-
tions for each input variable. The anfis used here contains
a total of 24. fitting parameters, of which 12 are premise
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(nonlinear) parameters and 12 are consequent (linear) pa-
rameters. Table 2 summarizes all characteristics of the
network used.

Table 2. ANFIS caracteristics

Number of nodes 21
Number of linear parameters 12
Number of nonlinear parameters 12
Total number of parameters 24
Number of training data pairs 211
Number of checking data pairs 211
Number of fuzzy rules 04

The ANFIS shown in Fig. 1 was implemented by using
MATLAB software package (MATLAB version 6.5 with
fuzzy logic toolbox), it uses 422 training data in 100 train-
ing periods and the step size for parameter adaptation
had an initial value of 0.1. The steps of parameter adap-
tation and Anfis surface are shown in Fig. 7 and Fig. 8
respectively.

Step size

0.14

0.12
0.10
0.08
0.06
0.04

0.02

0.00

0 20 40 60 80 100
Epochs

Fig. 7. Adaptation of parameter steps of ANFIS

ANFIS Surface

ANFIS
Prediction

Fig. 8. ANFIS surface

The obtained ANFIS network was evaluated on, the
complete data set using T's = 0.362 s and resulted in a
good prediction (Fig. 9) with RMSFE = 0.003834.
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5 CONCLUSION

The neuro-fuzzy model developed for predicting static
hysteresis of ferromagnetic material provides a means for
magnetic hysteretic behavior knowledge. Results revealed
that the proposed model is more closely to Jiles-Atherton
model. The collection of well-distributed, sufficient, and
accurately measured input data is the basic requirement
to obtain an accurate model. The adequate functioning
of ANFIS depends on the sizes of the training set and
test set. Future work will be focused in implementing
this model into electromagnetic devices analysis by finite
element method.
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