ELECTROPHYSICAL PROPERTIES OF GaAs P–I–N STRUCTURES FOR CONCENTRATOR SOLAR CELL APPLICATIONS

Arpád Kósa — Miroslav Mikolášek — Žubica Stuchlíková
Ladislav Harmatha — Wojciech Dawidowski
Beata Ściana — Marek Tłaczała

This paper is dedicated to electro-physical characterisation of a GaAs p-i-n structure grown for solar cell applications, which was carried out by light and dark current-voltage (IV) and Deep Level Transient Fourier Spectroscopy (DLTFS) methods. The conversion efficiency and open-circuit voltage were determined from \(I-V \) measurement at 1 and 20× sun light concentrations. Three electron like defects TA\(_{n1}\), TA\(_{n2}\), TD\(_n\) and one hole like defect TB\(_p\) obtained by DLTFS measurements were confirmed. The origin of these defect states was stated as native GaAs impurities.

Key words: solar cell, GaAs concentrator solar cell, \(I-V \) measurement, DLTFS, defects

1 INTRODUCTION

Solar energy is one of the many energy forms harnessed by humanity in order to produce electricity in an environmental friendly and efficient way. Among the various solar cell technologies [1–3], GaAs concentrator solar cells have the potential to achieve higher conversion efficiencies and are promising for space and terrestrial applications [4, 5]. These solar cell structures are optimized for specific applications — such as satellites, photovoltaic concentrator systems and laser power beaming. The record efficiency 28.8\%, GaAs solar cell had achieved in 2011 [5]. Due to their good properties such as high quantum efficiency and good irradiation tolerance, they are the ideal choices for space applications [7, 8]. In comparison with Si space solar cells, the radiation reliability of GaAs solar cells is over 20% higher and the efficiency of energy conversion is 20–25% and above. The lifetime in orbits of GaAs solar cells is 40–60% over the one of Si solar cells [9, 10].

Key factor of development is to understand recombination dynamics in GaAs solar cell structures. Valuable feedback for the technology process is provided by the Deep Level Transient Fourier Spectroscopy (DLTFS) method, which represents a unique technique of electrically active defect and recombination centre investigation.

The aim of this paper is to introduce and discuss results of DLTFS defect investigations of the GaAs concentrator solar cell grown by Atmospheric Pressure Metal Organic Vapour Phase Epitaxy (AP-MOVPE).

In addition, temperature dependent dark and light current voltage characteristics at two light concentrations were carried out to gain further insight on the structure operation and performance.

2 EXPERIMENTAL

2.1 Device processing

The investigated p GaAs:Zn/i GaAs/n GaAs: Si solar cell was grown by AP-MOVPE on a n-type GaAs (Si doped) substrate at the Wroclaw University of Science and Technology. The GaAs p-i-n junction was sandwiched between a Si doped GaAs substrate with \(n = 1 \div 2 \times 10^{18} \text{cm}^{-3} \) and a 50 nm thick Zn doped \(p^+ = 1 \div 3 \times 10^{19} \text{cm}^{-3} \) cap layer. GaAs p-i-n with thicknesses of 200/800/200 nm was connected with the substrate by a n type GaAs 200 nm thick buffer layer with \(n = 2 \div 3 \times 10^{18} \text{cm}^{-3} \).

Doping concentrations of the p-i-n region was as follows: \(p \) layer \(p = 2 \div 3 \times 10^{18} \text{cm}^{-3} \) and \(n \) layer as a gradient \(n = 2 \div 3 \times 10^{18} \text{cm}^{-3} \) to \(n = 1 \div 2 \times 10^{17} \text{cm}^{-3} \), Fig. 1.

<table>
<thead>
<tr>
<th>Type</th>
<th>Thickness</th>
<th>(n, p) (cm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>p GaAs cap:Zn</td>
<td>- 50 nm</td>
<td>1×10(^18)</td>
</tr>
<tr>
<td>p GaAs:Zn</td>
<td>- 200 nm</td>
<td>2×10(^18)</td>
</tr>
<tr>
<td>i GaAs</td>
<td>- 200 nm</td>
<td></td>
</tr>
<tr>
<td>n GaAs:Si</td>
<td>- 800 nm</td>
<td>gradient 1×10(^17) to 2×10(^18)</td>
</tr>
<tr>
<td>n(^+) GaAs:Si buffer</td>
<td>- 200 nm</td>
<td>2×10(^18)</td>
</tr>
<tr>
<td>n GaAs:Si substrate</td>
<td>- 350 nm</td>
<td>2×10(^18)</td>
</tr>
</tbody>
</table>

Fig. 1. Material compositions and layer properties of the investigated p-i-n sample

* Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Institute of Electronics and Photonics, Ilkovičova 3, 812 19 Bratislava, Slovakia, lubica.stuchlikova@stuba.sk
** Wroclaw University of Science and Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372, Wroclaw, Poland, marek.tlaczala@pwr.edu.pl

DOI: 10.1515/jee-2016-0054, Print (till 2015) ISSN 1335-3632, On-line ISSN 1339-309X © 2016 FEI STU
Light I–V measurements allowed us to determine basic output photovoltaic parameters: open circuit voltage V_{OC}, short circuit current density J_{SC}, fill factor FF, and conversion efficiency η_f, which are summarized for $T = 300$ K in Tab. 1. Temperature dependent output parameters for $1 \times$ sun and $20 \times$ sun light concentration are shown in Figs. 4(a)–(d).

Table 1. Solar cell output parameters extracted from light I–V characteristics of the GaAs p-i-n structure at $T = 300$ K

<table>
<thead>
<tr>
<th>V_{OC} (V)</th>
<th>J_{SC} (A/cm2)</th>
<th>V_{max} (V)</th>
<th>J_{max} (A/cm2)</th>
<th>FF (%)</th>
<th>η_f (%)</th>
<th>Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.74</td>
<td>0.02</td>
<td>0.62</td>
<td>0.015</td>
<td>74.7</td>
<td>9.09</td>
<td>1 \times sun</td>
</tr>
<tr>
<td>0.87</td>
<td>0.35</td>
<td>0.73</td>
<td>0.323</td>
<td>76.6</td>
<td>11.70</td>
<td>20 \times sun</td>
</tr>
</tbody>
</table>

Figure 4(a) shows a negligible change of J_{SC} with T for both $1 \times$ sun and $20 \times$ sun light concentrations. More significant temperature dependencies are observed for V_{OC}, FF which are consequently reflected also in η_f, Fig. 4(b)–(d). The decrease of the V_{OC} upon the temperature has a physical origin and it can be explained by considering the following equation

$$V_{OC} = \frac{AKT}{q} \ln \frac{J_{SC}}{J_{Sat}}$$

where A is the ideality factor, J_{Sat} is the saturation current density and J_{SC} is the short-circuit current density. J_{Sat} is strongly related with intrinsic carrier concentration of the GaAs, which increases upon the increase of temperature resulting into the increase of J_{Sat}. While the V_{OC} is reciprocally proportional to the saturation current, the V_{OC} increases with the decrease of T, Fig. 4(b).

Both V_{OC} and FF have downward trends with the T and determine the temperature behaviour of η_f. The temperature dependent η_f allowed us to determine temperature coefficients of efficiency η_{TKR} (in the linear temperature region 200–400 K) with values of -0.37 and $-0.31 \% / ^\circ C$ for light concentrations 1 \times sun and 20 \times sun, respectively. Such a coefficient describes the relative decrease of the efficiency with the increase of T.

Considering (1) it is obvious that high J_{Sat} has a detrimental effect on the V_{OC} and thus on the output photovoltaic performance. High quality materials with low concentration of defects are required to keep the J_{Sat} low. The investigation of electrically active recombination centres is therefore crucial for optimization of solar cells. Using the DLTFS method, four deep energy levels were detected (Figs. 5, 6) in the investigated structure. Three of them, labelled by us as TA$_{n1,2}$ and TD$_{n}$, are linked to majority traps and one labelled as TB$_{p}$ to a minority trap. We have produced several DLTFS spectra sets by experiments with different initial measurement conditions filling (U_{F}) and reverse (U_{R}) voltages, capacitance transient period width - time period (T_w) and filling pulse length (T_F). Typical DLTFS spectra measured on the GaAs p-i-n solar structure are displayed in Fig. 5.
Temperature dependent current-voltage characteristics of the GaAs p-i-n structure measured in the dark (a) — and under solar simulator with (b) — 1× sun, and (c) — 20× sun concentrated light.

Table 2. Calculated and compared deep energy level parameters of TA_{n1}, TA_{n2} and TB_p before and after data selection with various evaluation procedures

<table>
<thead>
<tr>
<th>Trap</th>
<th>(\Delta E_T) (eV)</th>
<th>(\sigma_T) (cm²)</th>
<th>(\Delta E_{T_{\text{ref}}}) (eV)</th>
<th>(\sigma_{T_{\text{ref}}}) (cm²)</th>
<th>Origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA_{n1}</td>
<td>0.486</td>
<td>5.11 × 10^{-16}</td>
<td>0.48 eV</td>
<td>3.8 × 10^{-16}</td>
<td>EC2 [12]</td>
</tr>
<tr>
<td>TA_{n2}</td>
<td>0.400</td>
<td>1.57 × 10^{-17}</td>
<td>0.37 eV</td>
<td>4.0 × 10^{-18}</td>
<td>[13]</td>
</tr>
<tr>
<td>TB_p</td>
<td>0.691</td>
<td>2.34 × 10^{-16}</td>
<td>0.63 eV</td>
<td>4.0 × 10^{-17}</td>
<td>Zn/Ni [12]</td>
</tr>
<tr>
<td>TD_n</td>
<td>0.747</td>
<td>2.95 × 10^{-15}</td>
<td>0.73 eV</td>
<td>1.3 × 10^{-14}</td>
<td>As_{Ga} [15]</td>
</tr>
</tbody>
</table>

The reverse and filling voltage variation allowed us to estimate the type and layer origin of these specific responses. Since in the case of a p-i-n structure the depletion region is located at the i-layer, the active layer of the solar cell, the presence of these defect states can greatly affect the efficiency.

Figure 4(b) shows higher \(V_{OC} \) for 20× sun compared to 1× sun light concentration. This phenomenon could be explained by considering (1). While the \(J_{Sat} \) is not dependent on light, the \(V_{OC} \) increases with the increase of \(J_{SC} \) at the higher light concentration.

The FF exhibits initial increase upon the decrease of \(T \), which is followed by saturation in the temperature region of 200-100 K. The FF is a very complex parameter, which describes the current transport, recombination of carriers and contact properties in the structure.

At slightly forward biased conditions hole injection to the i-layer is ensured thereby the DLFTS curve should include also results from minority carrier traps. Higher filling voltages should increase the injection thereby amplifying initial or reveal additional minority traps. This procedure is visible in Fig. 5(a), where in the first case at higher \(U_P \) value (0.3 V) the minority trap TB_p indicated increasing tendencies, while in the second at a very low value of reverse voltage \(U_R = -2 V \) the minority response disappeared revealing an additional majority trap TD_n, Fig. 5(b). Figure 6 shows the obtained Arrhenius curves where TA_{n1,2} and TB_p were calculated at \(U_R = -0.1 V \) \(U_P = 0.3 V \) \(T_W = 0.5, 1, 3 \) ms and \(t_P = 0.3 \) ms, while TD_n was identified at \(U_R = -2 V \), \(U_P = 0.05 V \), \(T_W = 2.5 \) s and \(t_P = 0.8 \) ms. At \(U_R = -0.1 V \), \(U_P = 0.3 V \) not only the peak amplitude of TB_p but also TA_{n1,2} was increased. This fact indicated that one of the TA_{n1,2} complex (EC2 or EL16) has a more significant concentration at the i/n interface. Also higher hole injection (\(U_P = 0.3 V \), increased peak of TB_p) made possible to more precisely detect the TB_p level. TD_n was identified as EL2 (EX2) a frequently described and discussed arsenic antisite defect of GaAs, by lowering the reverse voltage to -2 V.

At these measurement parameters of the TA_{n1,2} level was also evident present, but unfortunately it was no separable by the deconvolution method, Fig. 5(b). Only the presence of TA_{n1} was confirmed more strongly suggesting that TA_{n2} is located near the i/n interface.

Table 2 lists the evaluated deep energy levels with their parameters (activation energy \(\Delta E_T \), capture cross-section \(\sigma_T \)) and the probable origin of the deep energy level. All energy levels that were evaluated were identified as well-known material defects of GaAs. Electron energy level TA_{n1} was identified as EC2 (0.48 eV, 3.8 × 10^{-16} cm²) and was originated from a Ni_{Ga} complex [13]. It is highly probable that this defect state was introduced by the growth process. The second electron energy level TA_{n2} was identified as EL16 (0.375 eV, 4.0 × 10^{-18} cm²) [14]. Not many reports were published about this defect state, therefore the possible origin of a complex defect state between EC2 and EL16 is thereby not clearly understood. In our interpretation the TA_{n2} level (EL16) could be introduced by the GaAs-i interface of the GaAs p-i-n sample, which together with the
Our investigation showed, that the deep energy level T_{Bp} highly corresponds with a single p type deep energy level $HC1 (0.63 \text{ eV}, 4.0 \times 10^{-17} \text{cm}^2)$. According to the literature $HC1$ was observed in VPE samples diffused with Zn (Ni, Zn), which were used to study hole traps [13]. Zn creates a shallow p type donor level at 0.024 eV so it was ruled out.

Definite origin of $HC1$ was not stated however a minority character trap caused by majority carrier capture (electron) was described. A further example of this energy state showed a hole trap population including the energy 0.63 eV where oxygen was also discussed possibly accommodating certain charge states [15]. Presence of oxygen in MOVPE grown samples are frequently observed, therefore we can not entirely rule out this consideration. The electron trap TDn probably corresponds with defects $EX2$ or $EL2$. $EL2$ is a mid-gap defect level of GaAs, more precisely an arsenic antisite defect. $EX2$ is a formation of $EL2$ identified in annealed GaAs samples by rapid thermal annealing process [16].

It was suggested that $EX2$ is a complex of two vacancies and an antisite without interstitial arsenic atoms (V_{As}, V_{Ga}, As_{Ga}). To ensure a more pure growth process further investigations are needed in connection with all possible relations of the observed defects and the growth technology.

Fig. 4. Extracted (a) — J_{SC}, (b) — V_{OC}, (c) — FF, and (d) — η_f as a function of temperature at 1× sun and 20× sun light concentration.

Fig. 5. DLTFS measurements of the GaAs p-i-n sample at different reverse (U_R) and filling voltage (U_F) conditions.
Arrhenius curves of the GaAs p-i-n sample after DLTFS parameter variations. Arrhenius curves (a) – of the complex defect state TA_{n1,2} with defined reference data (EC2+EL16), (b) – of the defect state TB_p with reference data HC1, (c) – of the defect state TD_n with reference data EL2 and EX2.

4 CONCLUSION

This paper summarises the results of temperature dependent light and dark I–V measurements and DLTFS study of a GaAs p-i-n solar cell structure. Comparing output performance at different light conditions, the higher conversion efficiency as well as better temperature coefficient of efficiency measured at 20x sun light intensity indicated a good applicability of developed structures for concentrator applications. Four electrically active defects were confirmed by means of DLTFS. These were identified with high probability in connection with the growth process as well-known material defects of GaAs originated from a Ni_{Ga} complex, Oxygen and the arsenic antisite defect EL2. To achieve an increased efficiency, improved GaAs quality and the optimization of the solar cell design decreased concentration of recombination centres are needed.

Acknowledgment

This work has been supported by the Scientific Grant Agency of the Ministry of Education of the Slovak Republic (Project VEGA 1/0651/16) and by Wrocław University of Science and Technology statutory grants. This contribution is also the result of the project implementation of the National Centre for Research and Application of Renewable Energy Sources (ITMS: 26240120016), supported by the Research & Development Operational Programme funded by the EU.

REFERENCES

and Zn Diffused Vapour Phase Epitaxy n GaAs, Journal of
among Deep Level Centers in Gallium Arsenide, Materials Sci-
[15] DONEKER, J.—RECHENBERGI.: Defect Recognition and
Image Processing in Semiconductors, In: Proceedings of the sev-
enth conference on Defect Recognition and Image Processing,
[16] SUKKI, M.—EUN, K. K.—HOON, Y. C.: Abnormal Be-
havior of Midgap Electron Trap in HBGaAs during Thermal
Annealing, Journal of Applied Physics 63 (1988), 4422, doi:
10.1063/1.340187.

Received 14 June 2016

Arpád Kósa (Ing, PhD) born in 1987 is a young re-
searcher at the Institute of Electronics and Photonics, Slo-
vak University of Technology. He received his Ing degree in
microelectronics from the Slovak University of Technology in
2013 and received the PhD degree in 2016. His research inter-
est includes semiconductor defect analysis and investigation
by experimental and mathematical methods, electronics and
microelectronics, and mathematical evaluation algorithm pro-
gramming.

Miroslav Mikolášek (Ing, PhD) carried out his research
in the area of microfluidic circuits at the Johannes Kepler Uni-
versity in Linz, Austria, and based on this work he received
his Master degree in electronics from the Slovak University of
Technology, Bratislava, in 2007. In 2011 he received his PhD
degree in Electronics from the Slovak University of Technol-
ogy. At present he works at the Institute of Electronics and
Photonics, Slovak Technical University, in Bratislava. Main
interests of his research include simulation and diagnostics in
the field of amorphous silicon/crystalline silicon heterojunc-
tion solar cells.

Ľubica Stuchlíková (Prof, Ing, PhD.) graduated from
the Faculty of Electrical Engineering, Slovak University of
Technology in Bratislava (STU) in 1990, received the PhD
degree in 1996 and was appointed associate professor in 2006.
She works as a teacher at the Institute of Electronics and Pho-
tonics. From 2016 as full professor. Since 1990 she has been
interested in semiconductor defects engineering and electrical
characterization of semiconductor structures, devices and
materials.

Ladislav Harmatha (Assoc Prof, Ing, PhD) was born in
Dobsín, Slovakia, in 1948. He graduated from the Faculty of
Electrical Engineering, STU Bratislava, in 1971, received the
PhD degree in 1984 and was appointed associate professor in
1996. Since 1988 he has worked as a senior scientist in the
field of semiconductor defects engineering. His research
is focused on defects in semiconductor structures and their
characterization by electrical methods (capacitance transient
spectroscopy).

Beata Ściana (Ing, PhD) was born in Wroclaw, Poland,
in 1965. She graduated in Electronics from the Wroclaw Uni-
ersity of Technology, Faculty of Electronics, in 1990. From
1990 to 1993 she worked at the Elwro Electronics Factory
in Wroclaw. Since 1993 she has worked at Wroclaw Univer-
sity of Technology and pursued researches in epitaxial growth
(MOVPE method) and material characterization of AIIIBV
semiconductor compounds for application in advanced micro-
electronic and optoelectronic devices. She received her PhD
degree in Electronics from Wroclaw University of Technology
in 2000.

Wojciech Dawidowski (MSc, Eng) was born in Tomas-
zow Lubelski, Poland in 1987. He graduated from Wroclaw
University of Technology, Faculty of Microsystem Electronics
and Photonics in 2011. He is a PhD student and his research
is focused on epitaxial growth of AIIIB V-N semiconductor
compounds for solar cells, their fabrication and characteriza-
tion.

Marek Tłaczała (Prof, Ing, PhD) graduated in electron-
ics from the Faculty of Electronics, Wroclaw University of
Technology in 1972. In 1973-1976 he worked at the Elec-
trotechnical University in Leningrad (now Saint Petersburg).
He received his PhD degree in electronic engineering from the
Eлектrotechnical University in Leningrad in 1976 and DSc de-
gree from the Faculty of Microsystem Electronics and Pho-
tonics, Wroclaw University of Technology in 2002. Since 2009
he is full professor and head of the Semiconductor Devices
Lab in the Faculty of Microsystem Electronics and Photonics,
Wroclaw University of Technology.