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Estimation of parameters of a sum of sinusoids sampled
below the Nyquist rate with frequencies away from the grid

Igor Djurovié!?

We are witnessing a growing interest in processing signals sampled below the Nyquist rate. The main limitation of
current approaches considering estimation of multicomponent sinusoids parameters is the assumption of frequencies on the
frequency grid. The sinusoids away from the frequency grid are considered in this paper. The proposed procedure has three
stages. In the first two, a rough estimation of signal components is performed while in the third refinement in estimation is
achieved in a component-by-component manner. We have tested the developed technique on an extended set of simulation
examples showing excellent accuracy. Three scenarios are considered in experiments: missing samples, noisy environment,

and non-uniform sampling below the Nyquist rate.
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1 Introduction

Estimation of sinusoidal parameters is evergreen in
the signal processing community [1-8]. Development of
the signal processing field was closely related to sinusoids
and such interest is lasting. Recently, the emerging field of
compressive sensing signal processing handling the signals
sampled below the Nyquist criterion has attracted signif-
icant attention of the scientific community [9-11]. Recon-
struction of an undersampled and non-uniformly sampled
sum of sinusoids has importance in various applications.
The most notable application area is radar signal pro-
cessing [12]. Existing approaches usually treat the sum of
undersampled and non-uniformly sampled sinusoids but
with frequencies on the discrete Fourier transform (DFT)
grid. These signals are sparse in the DFT domain. How-
ever, a sum of sinusoids that are away from the grid is not
sparse in the DFT domain due to side lobes appearing at
all frequency bins. It is a violation of the restricted isom-
etry property common for the compressive sensing frame-
work [13]. However, the sum of sinusoids is always sparse
in the continuous-time FT domain. Therefore, the possi-
bility to develop an appropriate estimation algorithm for
such signals is investigated. In this research, we developed
a three-stage procedure for estimating the sum of sinu-
soids sampled below the Nyquist rate with off-the-DFT
grid frequencies. The first stage is devoted to a rough es-
timation of signal components, the second stage improves
accuracy in amplitude and phase estimation for all com-
ponents at once. The third stage improves accuracy in the
estimation of each signal component separately. The re-
run of the third stage is beneficial for improving accuracy
in the estimation process. The Aboutanios-Mulgrew algo-

rithm is used in the first and third stages [4]. In the second
stage, the amplitudes and phases are re-estimated at once
with a common technique forthe compressive sensing of
sinusoids [9].

2 Signal model

Consider the sum of sinusoids

M
x(n) = Z Amexp(jwmn+j90m)a ne [LN] )

m=1

(1)

where A;, w;, and ¢; are amplitudes, frequencies and
phases of signal components respectively. All frequencies
are distinct w; # w; for ¢ # j. We assume that instead of
N uniformly sampled samples according to the Nyquist
criterion we have K randomly sampled samples indexed
as n; € [I,N], k € [1,K], K < N and for simplicity
assume ng < Ngyq:

M
ZC(?’L}C) :ZAW exp(jwmnk +.7(pm)ak e[laK]ank < Nk+1 -

m=1

(2)
The goal is the estimation of signal parameters from
observation of z(n). For simplicity reasons it is assumed
that number of sinusoids M is known in advance. There
are several available algorithms for this purpose [9,10],
with the main obstacle that it is assumed that sinusoidal
frequency belongs to the grid. The signal model without

this limitation is considered in this paper.
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3 Algorithm

The algorithm is organized into three stages. In the
first stage, components with estimated parameters are
peeled off with subsequent estimation of weaker sinusoids.
The second stage considers the refinement of amplitude
and phase estimates. The third stage is similar to the
initial stage but now the strongest components are also
estimated with removed weaker ones estimated from the
previous two stages. The main issue in the proposed ap-
proach is the accurate estimate of signal frequency. For
this purpose, we have employed the Aboutanios-Mulgrew
algorithm in the first and third algorithm stages as a sim-
ple and effective solution for this problem. This interpola-
tor achieves a trade-off between complexity and accuracy
among many recently developed counterparts. Describe
now three algorithm stages in detail.

3.1 First stage — initial parameter estimation

In this stage, a search for the DF'T maxima position
is performed. The position of the maxima is then refined
as an estimator of the component frequency using the
Aboutanios-Mulgrew algorithm [4]. The dominant com-
ponent is removed and estimation of the second compo-
nent is performed. The procedure is repeated for each
component in the mixture. However, the entire procedure
brings inaccuracy in the process. The strongest compo-
nents are affected by weaker ones that are not removed
from the mixture while inaccuracy in estimation of the
strongest components has an impact on the estimation of
the weaker ones. This issue has been studied in [11] where
it is shown that the residual error caused by uncompen-
sated parts of signal components can be modeled as a
(Gaussian) noise with variance proportional to the per-
centage of missing samples. This implies the development
of the other algorithm stages described subsequently.

The algorithm scheme for the first stage is summarized
below.

e Set 20 (ng) = z(ny), k € [1,K].
For m=1: M
Calculate

(m) LS om) ;2mk
X" (k) = i Zx (ng)exp | —j " ) - (3)
k=1

This form of the DFT is the counterpart of the L-DFT
proposed in [14] for estimation of the DFT of the noisy
signal corrupted by impulsive noise. The single notable
difference is that the positions of uncorrupted samples
are known in the compressive sensing framework.
e Estimate frequency of the m-th component based on
the position of the DFT maxima.
27 -

27
o' = —k = arg max | X (k).

= Q)

However, this is a rough estimate of the DFT corre-
sponding to the frequency grid. The accuracy of this esti-
mate is weak so we have to employ an efficient procedure

to refine it. The oversampling of the DFT grid is demand-
ing. Therefore, employing efficient DFT interpolators is
common in the field. Due to advantages, the Aboutanios-
Mulgrew algorithm is clear choice for this purpose [4].
Note that it is already applied to the impulsive noise en-
vironment [6,7]. It can be described as follows.

e Set 6 =0,and ¢g=1:Q

5oy LXUE+3+3)| = X0k 46— 5)]
21X (k+ 64 3)| + [ XM (k+6— 3)
(5)

Hereafter, we are freely using computer programming

notation with a result from the right-hand updating

the left-hand side of the equation.

Note, that the required number of iterations for fully
sampled signal and Gaussian environment is only @ = 2.
However, for impulsive noise environment or the consid-
ered case of missing samples it should be larger with the
appropriate value in a range Q € [5,10] (see [6]).

e Frequency estimate is updated as

(6)

Now component with this frequency should be elimi-
nated from mixture. It is performed as described below.

2w
~(m) o~ (m) —9.
w w +

e Amplitude and phase estimates of the component are
obtained as

K
1 o o (m
Z= Ekz_lx( V() exp(—je ™), (7)

e Estimated component is removed from the mixture:

2™ (ng) = x(m_l)(nk) - Zexp(jdj(m)nk)

exp(jcb(m)nk)
- x

= 2= (ny,) -

K (10)
X Z (™D (ny,) exp(fjdj(m)nk) .

k=1

However, the estimates (6), (8), (9), are only rough
due to influence of other components. Therefore, we can
proceed with the other algorithm stages.

3.2 Second stage

After the first rough stage, we can assume that we have
a relatively accurate set of frequency estimates but with
potential for some percentage of outliers. In this stage,
amplitude and phases are re-estimated using the classical
least-squares procedure so it is not possible to remove
outliers from the first stage since they are associated with
wrong frequency estimates. In this procedure amplitudes
and phases of all components from the previous stage are
refined at once. The procedure is described below.
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Refinement of the amplitude and phase estimates can
be written by the following equation:
c=A"'b, (11)

where elements of the vector column b are

K
b = Y x(ni) exp(—j&™ny) (12)
k=1
while elements of matrix A are
K
Al = Zexp(—j[@(m) — cb(l)]nk). (13)
k=1

Amplitude and phase estimates are obtained from vec-
tor column c as
Al =lem|, @l = Lem. (14)
3.3 Third stage — component-by-component estimation
refinement

Here, the procedure is performed similarly as in the ini-
tial stage but with a notable difference that the strongest
component is estimated with removed remaining ones.
Other components are removed using estimates obtained
in the previous stages. Then, each component is re-
estimated with other components removed. This proce-
dure reduces the number of outliers in the estimation of
the signal frequencies. The outliers in the first two stages
most commonly appear for weaker components, especially
if they are close in the frequency domain to stronger com-
ponents. However, when other components are estimated
more precisely it is possible to remove them more accu-
rately and to make an easier estimation of the weaker
neighbors.

Inputs for the third stage are set of frequency estimates
oM = 5(m) and amplitude and phase estimates /Alxl =
A and ¢/ = ¢ from the previous stages.
e Form=1: M

Estimate of the m-th sinusoid as
M
Em(nk) = z(nk) — Y A exp(joni + @) (15)
=1
l#m

e Calculate the DFT estimate for the m-th component:

1 & ok
X (k) = = ;zm(nk)exp<jwnk). (16)
e Frequency estimate
9. 2 )
O = N”k; - Nﬂ argmax | X (k). (17)

The Aboutanios-Mulgrew interpolation for this fre-
quency estimate is performed as given below.
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e Set 6 =0, and for g=1:Q

1| X (k 46+ )| = [ X (k + 06— 3)|

0=0+-—— N — N (18)
2| X (k46 + )| + [Xn(k+6 = 3)|
e Update frequency estimate as
21
oM = G+ 520 1
@ W + ~ (19)
e Amplitude and phase are updated as
R 1|&E
Al = T Zﬂcm(nk)exp(—j@(m)”nk) ,
k=1 (20)
1 X
o = ?4{ Z T (N) exp(fjdj(m)”nk).
k=1 (21)

This stage can be repeated several times.
4 Simulation study

Within the simulation study sum of sinusoids (2) is
considered. The required number of samples according to
the Nyquist criterion is N = 1024. Frequencies of sinu-
soids are selected randomly by the uniform distribution
in the interval w; € [—pWmax, PWmaz) Where wmax = /A
is maximal frequency according to the Nyquist criterion,
A is the sampling interval. To avoid aliasing effects we set
p = 0.99. Phases and amplitudes are selected randomly
in ranges p; € [0,27) and A; € [0.5,1], respectively. The
minimal distance between frequencies is set to three fre-
quency bins 67/(NA).

Experiments are performed with different number si-
nusoids M € [5,60] with an increment of 5 components
(5:5:60 in MATLAB notation) and the number of avail-
able samples in the range K € [40,640]. Three sets of ex-
periments are conducted: (a) missing samples when it is
assumed uniform sampling according to the Nyquist rate
but with a large portion of samples unavailable; (b) previ-
ous case but for a Gaussian noise environment; (c) sam-
ples on a random position. The results of these experi-
ments are described in three subsequent subsections.

4.1 Missing samples

Figure 1 illustrates the percentage of outliers for M =
5, 20, 40, and 55 sinusoids as a function of the avail-
able number of samples K. The blue line represents the
percentage of outliers in frequency estimation after the
first algorithm stage, green line after the third stage, red
line after the third stage is repeated once, and the black
line is for 6 re-runs. The percentage of outliers decreases
with an increasing number of involved algorithms steps
as can be predicted. The improvement is the most em-
phatic around the breakdown point of the algorithm. For
M = 55 the breakdown point of the algorithm is about
K =250 samples. After the first stage of the algorithm, it
is required about 350 samples to eliminate outliers while
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Fig. 1. Percentage of outliers for a various number of sinusoidal components (M =5, 20, 40, 55) in the function of number of available
random samples K : blue line — first stage, green line — third stage, red line — a re-run of the third stage, black line — six re-runs of the
third stage
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Fig. 2. Required number of samples for achieving percentage of outliers in frequency estimation below specific thresholds: (a) — 0.1%;
(b) = 0.3%; (¢) — 1%; (d) — 3%; (e) — 10%; (f) — 30%, as function of number of signal components: blue — after first step, green — after
third step, red — after third step is re-run, black — after 6 re-runs of the third stage

for the algorithm with six re-runs it is required only about specific thresholds 0.1%, 0.3%, 1%, 3%, 10%, and 30% in
240 samples, ‘e, improvement of about 30%. Figure 2. It can be seen that for M = 60 number of

For further comparison, we have given number of sam- outliers below 0.1% is achievable in the first stage with
ples K required to reduce the percentage of outliers below 340 available samples, while the algorithm with re-runs of
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Fig. 3. MSE in the estimation of parameters in function of K : top row — M = 5, middle row — M = 20, bottom row — M = 40: left

column — phase estimation; central column — amplitude estimation; right column — frequency estimation, blue — first stage, magenta —

second stage, green — third stage, red — a re-run of the third stage, black — 6 re-runs of the third stage, * — MSE in case with under
performing estimates included

the third stage requires only 260 samples. The difference
is more emphatic for a larger number of signal compo-
nents and a smaller threshold.

The mean squared error (MSE) in the estimation of
signal phases, amplitudes, and frequencies is depicted in
Figure 3 for signals with M =5, 20, and 40 components
obtained with 200 independent trials for each K and M .
The MSE sharply decreases above value K where the
number of outliers decreases toward zero. Substantial im-
provement is achieved with re-running of the third algo-
rithm stage. For M = 40 only for two components out of
160000 (M = 40 components x 200 trials x 20 different
values of K') obtained accuracy in parameter estimation
after six re-runs of the third stage are significantly worse
than for other components and trials. These two com-
ponents are not taken into account for MSE evaluation,
ie, their effect is depicted with black stars at appropriate
places. Note that such estimates are not in fact outliers
since the frequency estimation of this component is still
relatively accurate. For one of them, the absolute error in
the frequency estimation is 0.07, ie, far below the single
frequency bin (Aw = 7). There is a significant improve-
ment in the process of re-running the third stage of the
algorithm. After the first stage, all components have an

error in frequency estimation larger than 0.01 and this
number decreases to 22% of components after the first run
of the third stage. Therefore, we think that couple of com-
ponents estimated with such inaccuracy out of 160000 is
acceptable after several re-runs.

For M = 20 and K = 130 we have an average of
1.6% of outliers in the first stage. Figure 4 depicts one
trial with M = 20 and K = 130 where an outlier ap-
pears in frequency estimation after the first stage. Exact
frequencies are given on the x-axis while the y-axis cor-
responds to the estimated frequencies. Estimates should
appear as close as possible to the diagonal. In the con-
sidered trial we have two obvious off-diagonal outliers de-
picted with arrows. They are caused by the side lobe of
close signal components (around w = 0 and w = —1500).
We can also observe two additional components between
w € [400,800] clearly above the diagonal line but not too
far as in the case of outliers. These two components are
accurately estimated after the third stage of the algorithm
while outliers required a re-run of the third stage. The top
part of Figure 5 gives the square root of the absolute er-
ror in the estimation of frequencies for this experiment
for each component sorted in decreasing order by ampli-
tude. Blue bars represent errors in estimation after the
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Fig. 4. Frequency estimates for a trial with M = 20 and K =

130, z-axis — the exact value of frequencies; y-axis — estimated

frequencies, circle — first stage; star — second stage; diamond — third
stage; square — 6 re-runs of the third stage
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Fig. 5. Frequency and amplitude estimation in a trial for M = 20
and K = 130, top — square root absolute errors in frequency
estimation; bottom — absolute errors in amplitude estimation, blue —
first stage, magenta — second stage, green — third stage, red — after
re-run of the third stage, black — 6 re-runs of the third stage

first stage with long bars on weaker components corre-
sponding to outliers. Obviously, after the first stage er-
ror is more emphatic for weaker components as expected.
They remain large even after the third algorithm stage
represented with green bars. However, errors are in gen-
eral significantly smaller after the third stage (green are
shorter than blue bars). Red bars after the first re-run of
the third stage are still visible (maximal value 0.36) while
black bars obtained by six re-runs of the procedure are al-
most negligible (maximal value 0.056).A similar situation

appears at the bottom part of Figure 5 where absolute
values of errors in the estimation of amplitudes after dif-
ferent algorithm stages are shown. Again it can be seen a
significant drop in the absolute error after re-running the
third algorithm stage. After the third stage,maximal ab-
solute error is 0.34, re-running once reduces it to 0.132,
while after six re-runs maximal absolute error does not

exceed 0.0009.

4.2 Gaussian noise environment

The robustness of the proposed technique has been
tested in the experiments with the Gaussian noise en-
vironment. We have added the Gaussian white complex
noise with independent real and imaginary components
and with variance 2. Figure 6 depicts the effect of ad-
ditive noise on increasing the percentage of outliers. For
brevity reasons, we have presented only results after the
third algorithm stage with six re-runs. It can be observed
that for both cases, M = 20, Figure 6(a) ,and M = 40
components (Figure 6(c)), we have a moderate increase in
the percentage of outliers to the noiseless case. For exam-
ple, for M = 20 and K = 130, the percentage of outliers
increases from below 0.1% for the noiseless case to about
1.3% for 02 = 2. Similarly, for M = 40, and K = 160 the
percentage of outliers increases for o = 2 only for 0.08%
to the noiseless case. In addition, Figures 6(b) and (d)
present a decrease in the percentage of outliers between
the first and six re-runs of the third stage. Behavior is
very similar for noisy and noiseless cases but more em-
phatic for the noisy case with higher values K than in
the case of the noiseless signal. This is an important fea-
ture since for noisy environment outliers can be expected
more frequently for higher K.

Figure 7 gives the MSE in the estimation of phases (top
row), amplitudes (middle row) and frequencies (bottom
row) for M =5 (left column), M = 20 (central column),
and M = 40 components (right column), as a function
of the noise variance o2 for various numbers of available
samples K for six re-runs of the third algorithm stage.

4.3 Nonuniformly subsampled signal

Final experiments are related to random nonuni-
form sampling performed in the considered interval t €
[-T/2,T/2) instead of random selection for the set of uni-
formly spaced samples. Figure 8 depicts the probability of
outliers in the estimation of signal parameters for various
algorithm stages and the number of signal components.
Obtained results are similar to those in Figure 1 but it
can be noted that here it is required approximately 25%
more samples to achieve the same accuracy. The reason
behind this is the higher variance in estimation caused
by nonuniform sampling [9].

The MSE in the estimation of phases (top row), am-
plitudes (middle row), and frequencies (bottom row) for
M =5 (left column), M = 20 (central column), and
M = 40 components (right column), for nonuniformly
sampled signals, is given in Figure 9. Only for a single
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Fig. 6. Percentage of outliers infrequency estimation for noisy environments: (a) — after six re-runs of the third stage for M = 20,

(b) — difference between the percentage of outliers after the first stage and after six re-runs of the third stage for M = 20, (c) — after six

re-runs of the third stage for M = 40, (d) — difference between the percentage of outliers after the first stage and six-re-runs of the third
stage for M = 40: blue line — noiseless signal o2 = 0, green line — 02 = 0.5, red line — 02 = 2
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Fig. 7. MSE in the estimation of parameters of noisy signals in the function of o2, for various numbers of available samples K : left
column — M = 5, middle column — M = 20, right column — M = 40, top row — phase estimation, central row — amplitude estimation,
bottom row — frequency estimation
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line — after the first stage, green line — after the second stage, red line — after re-run of the third stage, black line — six re-runs of the third
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Fig. 9. MSE: top to bottom row with M = 5,20,40: left column — phase estimation, central column — amplitude estimation, right
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re-run of the third stage, black — after six re-runs *MSE in the case with underperforming estimates included
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component in a single trial for M = 40 and K = 500,
we noted an estimate with error significantly above the
other components for six re-runs of the third stage. It
is excluded from the MSE plot but again black asterisk
is used to denote its influence on the MSE. We refrain
to call it the outlier since the estimation error for this
component is only 0.09. For K = 500 and M = 40
all components after the first stage have absolute error
above 0.01. However, after a single re-run of the third-
stage 175 components (out of 8000 components, M = 40,
and 200 trials) have an absolute error greater than 0.01,
102 components have an absolute error greater than 0.05,
and only 3 absolute errors greater than 0.1. After six re-
runs as already stated remains a single component with
an absolute error greater than 0.01.

5 Conclusion

The algorithm for precise estimation of multicompo-
nent sinusoidal signals with missing samples is proposed.
It consists of three stages. The goal of the first two stages
is to find components and to get at least a rough esti-
mation of parameters while true refinement is achieved
in the third stage. Each component in this stage is esti-
mated with the assumption that the other components
are removed from the mixture. The Aboutanios-Mulgrew
algorithm, a simple but effective technique, has been used
in the refinement process. We have performed the sim-
ulation study showing that re-running the third stage
effectively improves accuracy in the estimation of com-
ponents. In a future study, we will consider derivations
on the accuracy of the algorithm in terms of number of
components, number of available samples,number of algo-
rithm re-runs, and estimation of parameters for unknown
number of components, etc.
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