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Robust decentralized controller design
in time domain: Equivalent subsystem approach

Vojtech Vesely!

In this paper, the original method to design of PID robust decentralized controller is obtained for linear time-invariant

large-scale uncertain system. The controller design procedure performs on the subsystem level such that the closed-loop
stability and performance of complex system in the frame of the designer chosen controller design procedure ( Hz, L2 -gain,

pole placement,...) is guaranteed. The proposed method is implemented in two steps. In the first step, the required dynamic
properties of the subsystems are determined so as to ensure the stability of complex system. In the second step, on the

subsystem level a decentralized controller design is provided using any suitable design procedure for each subsystem.

Keywords: large-scale system, equivalent subsystem method, continuous time system, robust stability, output decen-
tralized feedback, quadratic/parameter dependent quadratic stability

1 Introduction

One of the great challenges of control theory is to de-
sign robust, optimal, decentralized controller with the
increasing size of dynamic uncertain large-scale system
models. Such typical problems arise in the control of
power, water, traffic, mechatronic systems and large real
technological processes, and so on. Such complex sys-
tems are too large and too complex to be controlled. For
these reasons, the complex system should to be decom-
posed into a number of interconnected subsystems and
controlled in a decentralized fashion. In such a way, the
overall plant is no longer controlled by one centralized
controller but by number of independent decentralized
controller [1], [2].

Rapid development of decentralized control design
methods began since 1970s. For detail overview of de-
centralized control and their evolution, see the excellent
review paper of [2]. For linear time-invariant large-scale
systems, the decentralized controller design procedure has
been obtained in frequency and in the time domain. In
the frequency domain mainly were developed: sequential
design [3], independent design method [4], and methods of
equivalent subsystem approach [5]. The first two method
are characterized mainly by complexity of solution and
their conservatism. The last method solves the proposal
of robust decentralized controller with a necessary and
sufficient stability condition.

In the time domain the decentralized design procedure
started with Vector Lyapunov function [6] and aggrega-
tion matrix [1]. Much progress has been made in the de-
sign of decentralized control through the use of LMI-BMI,
see review article [2]. Complete complex model needs to

be used when LMI-BMI approach is used when design-
ing decentralized control. These tasks cannot be solved
simply, while the systems are too large and the problem
is to complex. Decentralized controllability and observ-
ability, and decentralized stabilization of complex system
are given in [7] and references therein. Decentralized con-
trol for discrete-time linear systems should be found in
frequency domain [5], in time domain [8] and references
therein.

In this paper, a fundamentally new method of design-
ing a decentralized controller on the subsystem level is
proposed. The method consists of two steps. In the first
step, such dynamic properties of subsystems are deter-
mined that the complex system should be stable. In the
second step, of the task to designing a decentralized con-
troller is to ensure the required subsystems dynamic prop-
erties. In the first step of the present method, the proper-
ties of the subsystems are determined with the necessary
and sufficient conditions at which the stability of the com-
plex system is ensured. The conservatism of the proposed
method depends on the chosen design procedure when
designing the decentralized controller.

We provide preliminary results that are necessary to
define an equivalent subsystem and the formulation of
the problem. After an equivalent subsystem and its use
for the design of decentralized controller for a linear pos-
itive large-scale systems is introduced, we bring example
showing the effectiveness of proposed method.

Hereafter, the following notation conditions will be
adopted. Given a symmetric matrix P = PT € R"*",
the inequality P > 0, (P < 0) denotes matrix positive
(negative) definiteness. I, 0, denotes the identity, (zero)
matrix of corresponding dimensions.
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2 System description and preliminaries

Consider the polytopic large scale continuous time-
invariant system with input and output matrices in the
decentralized structure

&= Al)r + B()u,

where 2 € R",u € R™,y € R’ are the state, control in-
put, and controlled output, respectively. System matrices

N

(A(€), B(€)) = _(Ai, Bi)é, (2)

i=1

belong to a polytopic uncertainty domain. For the uncer-
tainty £ € Q¢ holds

N N
Qe ={>0,i=1,2,.,N,Y &=1,Y &=0}. (3)
=1 =1

Entries of matrices A;, B;,C are constant and last two
matrices need to have in decentralized structure.

Aill Ailm
A; = e Rnxn
B; = blockdiag[B;1...Bim] € R"*™  (4)

C = blOdelag[C1Cm] c Rl><n i= 1, 2’ o N

Assume that complex system (1) is centralized control-
lable, observable and there are no unstable fixed modes
(9],[10], [11].

The system (1) can be formally decomposed to subsys-
tems in different ways. In this paper, the division of the
above matrices into sub-matrices follows from inherent
properties of complex large-scale systems. Non-overlaping
structure [12] will be used in the following text. The prob-
lem studied in this paper is to design of a robust PI, (PID)
decentralized controller for every non-overlapping subsys-
tem level with decentralized control algorithm

o0
Uj = k/’ijj.Tj + kijCj xde + k?deji‘j s
to
i=1,2,....m,

such that proposed robust controller guarantee the closed-
loop stability and performance of the subsystem and com-
plex uncertain system with designer defined performance.
Note that, all decentralized controller design procedure
performed on the subsystem level.

2.1 Some preliminaries

LEMMA 1, [13]. If

holds for scalars ¢, p € R and identity matrix I, € R™ "
then the eigenvalues of matrix G are to the form A\, =
cay + 0 where «y is the eigenvalue of matrix H, k
1,2,...,n
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DEFINITION 1, [14]. If G € R™™, its field of values is
F(G)={v"Gv,veC™vTv=1}

LEMMA 2. If A is an eigenvalue of sum of two symmetric
matrices G + H, then A\ € F(G) + F(H) where F(.) is
the field of values of the corresponding matrix.

From Lyapunov stability theory one obtain

LEMMA 3. The sum of two matrices G + H € R"*"
is stable if and only if there positive definite Lyapunov
matrix P > 0 exists such that the Lyapunov inequality

(G+H)'P+P(G+H)<0, (7)

holds.

DEFINITION 2. Let matrix FF = ¢;;n x n be the struc-
tured perturbation matrix of system (1) where e;; = 1,
if between i and j subsystems an interaction connection
exists, e;; = 0, if between ¢ and j there is no connection.

DEFINITION 3. A complex system (1) is connective stable
if it is stable for all possible entries of matrix £ = e;; or
the system is connective stable if an interaction becomes
decoupled or perturbed (0 < e;; < 1).

3 Main results

3.1 Equivalent subsystem approach

In this section, the original results to design of robust
PI, (PID) decentralized controller using a Equivalent sub-
system approach in time domain are obtained. Equiva-
lent subsystem is an auxiliary subsystem to serve for de-
sign of the decentralized controller which guaranteed the
stability and performance of the closed-loop subsystem
diagonal matrix Ay and complex uncertain system. De-
signed decentralized controller guarantee for the closed-
loop uncertain system the quadratic/parameter depen-
dent quadratic stability and the performance defined by
the designer. Controller design procedure performs on the
subsystem level. Let’s split uncertain complex system (1)
to the form

& = (Ad(§) + Am(§))z + B(§u;y = Cz,  (8)
or for i-th vertex of polytope

& = (Ad; + Am;)x + Bu;y = Cx,
9
u = blockdiag{u, ug, ...un},i =1,2,.... N, ©)

where Ad(€) is the block diagonal part of matrix A(&)
and Am(&) = A(&) — Ad(€) is diagonal off part of system

(1)
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THEOREM 1. Let us have two matrices Ad;, Am; with
constant entries. The following sum D; = Ad; +Ia+ Am;
is stable for some « if positive definite matrix P; € R™*"
exists, such that the following inequality holds

(Ad; + Am;) " Py + P;(Ad; + Am;) +2aP; < 0. (10)

Proof . Due to Lemma 1 one obtains
(Ad; + Ta+ Am;) " P + P(Adi + I+ Am;) < 0. (11)

After small manipulation of (12) one obtain (11), which
proofs the sufficient stability condition. Let us assume
that matrix D; is stable, then using Lyapunov stability
theory there is a positive definite matrix P; exists such
that inequality (11) holds, which proofs the theorem.

Consider the uncertain polytopic system in the form
t=A)x = Zijio((Adi—l—Ia—i—Ami)Ei)x. The stability of
such complex uncertain system after small modification
of [15] is given in the following.

LEMMA 4. The linear uncertain polytopic system A(§) is
stable if matrices G, H € R™*™ | parameter o and sym-
metric positive definite matrix P;,©1 = 1,2,..., N exist,
such that the following inequality holds

D/H" + H(Ad; + Ia + Am;) *
T, AT T|<0
Pi—H —|—G (Adz—i—la—i—Aml) —G—G

(12)

i=1,2,..,N.

From (10) or (12) one obtains the parameter «. If
obtained parameter o > 0, the complex system is stable.
In this case decentralized controller should be designed
such that for all closed-loop j—th subsystems eigenvalues
next inequality holds

)\k((Adi + B; * PIC)) < )\k(Adi + al),
k=1,2,....d,

where: PIC = Pl-controller. The decentralized controller
should not make dynamics of the corresponding subsys-
tem worse than the without controller. If @ < 0 is ob-
tained then the complex system is unstable. To with cope
this problem of the decentralized controller design the fol-
lowing auxiliary equivalent subsystem matrix was intro-
duced, chose f = |a| +d where § > 0 is small tuning
parameter (for the first step § = 0).

DEFINITION 4. Equivalent subsystem is defined as

Let us assume, static output feedback with gain ma-
trix K, (P, PI) controller which guarantees the stability
of closed-loop equivalent subsystems. Then the following
corollaries hold

COROLLARY 1. Closed-loop complex system is stable if

o Ae; + B;K;C, i=1,2,...
loop subsystems are stable

o It is sufficient if A\ (Ad; + B; K;C) < A\ (Ad; +1a),i =
1,2,....,N,k=1,2,...,d holds for all dominant eigen-
values. Otherwise, the stability of complex system
needs to be checked, using (12) for uncertain system
and system without uncertainty by (11). For the ob-
tained o > 0 the complex system is stable.

, N is stable or all closed-

e Asgsume that complex system (1) is centralized control-
lable, observable and there is no unstable fixed mode.

Summarizing the results, the following decentralized
controller design procedure has been obtained.

Algorithm for decentralized controller design

Assume that complex system is decentralized control-
lable and observable, [7] and there no unstable fixed
mode.

e In the first step the value of « is calculated using for
classical MIMO systems (11) or for uncertain poly-
topic system, (12). If @« > 0 (the complex system
is stable), decentralized controllers are designed for
all subsystems using any controller design procedure
such that for the following dominant inequalities hold
ECL(Ad” + Bij x C % C(]))k< EOL(Ad” + Ija)k,
1=1,2,.,N;5 =1,2,...mk = 1,2,...,d;;. Where:
C = controller and ECL = eig-closed-loop, EOL =
eig-open-loop. Note that, d;, d in this time determined
by experimental way. The stability of a complex lin-
ear and nonlinear system can be determined using an
aggregation matrix, [1], [16]. If the system is stable
and the diagonal elements of the aggregation matrix
are not increased by decentralized controllers, the sta-
bility of the system will not be disturbed. This paper
specifies the result achieved using the aggregation ma-
trix.

e Complex system is unstable, a < 0. Define the equiv-
alent subsystem using (13) where for the first step one
puts 6 = (0 0.1). Design a robust decentralized con-
troller on the equivalent subsystem level using any de-
signed method such that all closed-loop (equivalent
subsystems-+decentralized controllers) should be sta-
ble. The complex system should be stable if for all
closed-loop subsystem eigenvalues the following hold
ECL(Adi; + Bij * Cx C(j)) < EOL(Adij + ax 1),
k=1,2,...,d;. Otherwise, increase § [1], [16] and re-
peat the calculation from the second step. Check the
closed-loop stability of the complex system with sta-
ble subsystems by calculation of new «. If @ > 0 than
the complex system is stable.Note that if I-part of the
decentralized controller is used for all subsystems then
m new subsystems states are introduced. In this case
the interaction matrix Am need to be modified by zero
elements.

e If new calculated o < 0 and the complex system could
not be stabilized increasing ¢§, then there is fixed un-
stable mode in the complex system. See characteriza-
tion of fixed modes and criteria for its testing in [10].
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4 Example

The example is rather academic. The goal is given as
follows. Design a robust decentralized PI controller for
the given positive uncertain polytopic system.

4.1 Robust decentralized controller design for positive
systems

Many real plant models belong to the class of positive
systems. In this subsection, the controller design proce-
dure will be obtained for positive systems in the frame of
Hs.

DEFINITION 5. A linear uncertain system (1) is said to
be positive if both state and output are non negative for
all non negative initial states and input.

DEFINITIONG6. The real matrix D{d;;} is Metzler if it has
non negative off-diagonal entries, d;; > 0,4 # j. Metzler
matrix is stable if and only if all its eigenvalues lay in the
left half of the complex plane

For more detail about positive systems, see excellent
tutorials [17] and [18].
For i-th x vertex and j-th equivalent subsystem of com-
plex system, one obtains the following subsystem model
ij = Aeijzj + Bijuj;yj = CjSCj . (14)
To obtain static output feedback with PI controller in the
subsystem model,the number of state variables needs to
be increased [19]. In the decentralized control algorithm
(5), integral term can be included into the state vector
defining new state as z; = j;zo yi(r)dr,ei.z; = y; =
Cjz;. PID control algorithm is in the form
_ SREZ j
uy = kp; Gy kil |\ |+ ks Gy 0L (15)

Zj
j=1,2,...,m,

or uj; = K;x,; + Kpiy;. Closed-loop system for PI con-
troller is described as
. Ae;; + Bijkp;C;  Bijki;
g = { s+ BukpiC; - By ]}znj. (16)
J

From the equation (16) follows that the following con-

ditions need to be satisfied to guarantee the closed-loop

matrix Metzler properties and stability with PI controller:

e The matrix Ae;;+B;;kp;C; is a stable Metzler matrix.

e The matrix B;;ki; needs to have positive entries or
integral part of controller needs to have positive feed-
back.

The second point is crucial problem to guarantee the
stability of (16). This paper proposes using of the approx-
imate I part of the controller to get over this problem, as
follows

2 =Y =% (17)
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where v > 0 is tuning parameter, 1/y > (3 — 5)T's
where T's is maximal value of system time constant. Note
that, if v = 0 the proposed decentralized control design
procedure could be used for classical systems. The closed-
loop (16) for i-th vertex is changes to

Ae; + BikpC' Biki

Ty = Acizy, Ac; = [ C Iy

:| c Rexe’

(18)
where matrices Ae;, By, kp, ki are block diagonal matri-
ces with corresponding subsystem matrices. All uncertain
closed-loop complex plant is

Am(e) = {Am(f) 0} € Roxe,

0 0
(19)
For polytopic equivalent subsystem, one should choose
the Lyapunov function as

@n = (Ac(§)+Am(€))an;

N
V(©) =2 P(Qen; P =Y P& (20)

The first time derivative of Lyapunov function gives

7y = ol |PE) PO, o7 T 4T
O =l [P POu o =gl o]l

To reduce the conservativeness and split the subsystem
matrices to a Lyapunov matrix the following two auxiliary
matrices N1, No are introduced

(21)

. [zzv; o)

vy 2N2T:|[AC(§) —Ivy =0.

Summarizing (21) and (22) one obtains the time deriva-
tive of Lyapunov function for all equivalent subsystems

av (¢)

dt
T |:N1TAC(€) + Ac(§) TNy
! — N1+ NJ Ac(€)

—N, + Ac(é) N,
—NJ — N,

(23)

Equation(23) implies that if %t(g is negative the
closed-loop system is stable. There are many ways to
obtain PI controller design procedure for an equivalent
subsystem. Some of them are: Hj-approach, Hy,y, re-
gional pole placement approach, etc. There is only one
important constraint to guarantee the stability of com-
plex plane given by Corollaries 1 item 2. In this paper
the Hs approach is used with LQSR (state, derivative of
state and input) quadratic performance

T
Js = / Jdt;
to

i=1,2,...m,

J = xZan + :'EIS:'cn + uTRu,
(24)
where @, S5 € R°*¢ > 0, R > 0 are matrices.

In the next the Bellman-Lyapunov equation is used to
obtain robust PI controller design procedure.
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LEMMA 5, [20]. Consider the uncertain positive system
& = Ac(&)x, with decentralized structure. Decentral-
ized control algorithm (15) for PI controller belongs to
the class of guaranteed cost control for closed-loop sys-
tem if and only if there is a positive definite Lyapunov
function existing and € > 0 such that following condition
holds:

Be = maxu].{d‘;l—z(f) +J} = —ex) z, .
Substitution (23) and (24) to (25) leads to obtaining
of the robust decentralized controller design procedure.
Designed controller ensures guaranteed cost with optimal
value of quadratic cost function (24). In the frame of
Hy the designed controller needs satisfy the following

inequality

(25)

N
Be=uv W()v; <0; W(£) = Z Wi&; | (26)
i=1

W; = {wkli}2><2; i=1,2,...,N.
Note, that for the Lyapunov function chosen by the de-
signer in (26) conditions ”if and only if” may be reduce
to 7if”.

and

N
w1 = Ny Ac; + Ac] Ny +Q+KTRK+ZP1'&,
i=1
wigi = =Ny + Nj Aci + Pi; wari = wiy,
Wwag; = —Ny — No+ S,
where K = [kpC ki].

Optimal control is obtained if Tr(P;) — min,i =
1,2,...,N. The inequality (26) defines the robust decen-
tralized controller design procedure for positive system in
the frame of Hs.

THEOREM 2. The uncertain polytopic positive subsys-
tem (14) is robust parameter dependent quadratically
stable/quadratic stable with guaranteed cost if for the
given performance matrices ), S, R and bounds & € ¢
two auxiliary matrices Ny, No, symmetric positive def-
inite matrix P; > 0 and decentralized controller gain
matrices kp, ki exist such that inequality (26) holds. If
the conditions of Corollaries 1 are met the complex posi-
tive system is stable and satisfies conditions of connective
stability of a complex system.

Proof . Sufficient stability conditions of above The-
orem results from the previous consideration, egs. (18)-
(25) and Corollaries 1.

Note that all matrices in (26) are all block diagonal
matrices and all decentralized controller design proce-
dure perform on the subsystem level. For matrix Ac¢; and
K;holds

Ac; = blockdiag{ [Aeij Jrg?jkijj Bijk,zyj} } , (27)
J -4

i=1,2,.,N, j=1,2,...m K; = [kp;Cj kij].

4.2 Model and parameters

State and output feedback (for comparison) decentral-
ized controller need to be designed for the given positive
uncertain polytopic system with two vertices and two sub-
systems. Hy performance with quadratic cost function
defining the quality of the complex system is given as fol-
lows, (24) Q; = ql,q =5.1073,5; = sI,s = 107°,R; =
rl,,r = 1,7 = 1,2. The system matrices are as follows:
X&) =X16 + X263 X = A, B

The first vertex, i = 1

-2 0.2 02 0.1
A, — | 035 —0.005 0.5 0.037
= 1008 022 —-05 0.16 |’
0.03 0.16 0.18 —0.25
Bl =[0 1].
The second vertex, i = 2
~-1.8 0.15 0.15 0.03
A, _ | 022 —025 012 022
2710072 022 -04 01 |°
0.01 011 02 -0.3
Bl =[0 1].

Output matrix for state and output feedback

State Feedback: C' = Ll) (1)] ,

Output Feedback:C = [0 1].

Robust decentralized state feedback controller

In the first step, one calculates the value of a from
Lemma (4) and (12). The value oo = —0.0533 is obtained.
Complex uncertain system is unstable. In order to guar-
antee the stability of the complex system the proposed
state feedback controller should shift subsystem’s eigen-
values to the left by the value «. The tuning parameter is
0 = 0.05. Using Hs performance the obtained state feed-
back controller (26) for the first and second subsystems
are given as follows:

The first subsystem

kpi1 = 1.588, kpio = —16.249.

The second subsystem

kpoy = 1.6179, kpay = —16.2488 .

For comparison, eigenvalues of two subsystems Fig(i, j),i =

1,2;5 = 1,2 without and with state feedback controller
are given below:

Eig(1,1) = {—2.0345,0.0295} ,
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Eig(1,1)(control) = {—1.9729, —16.2812} ,
Eig(1,2) = {—0.5858, —0.1642} ,
Eig(1,2)(control) = {—0.482, —16.5178} ,
Big(2,1) = {—1.821,-0.229} ,
Fig(2,1)(control) = {—1.7819, —18.142} ,
Big(2,2) = {~0.5 - 0.2},
Eig(2,2)(control) = {—0.3990, —18.1899} .

The obtained eigenvalues Eig(i,j)(control) clearly
show that Corollary 1. holds and the complex system is
stable, which proofs the calculated values of closed-loop
eigenvalues for ¢ = 1. The state feedback closed-loop ma-
trix is

9 0.2 0.2 0.1

1938 —16.254 015 037 M

Aa=100s 922  —o05 16 |
003 016 1.798 —16.499

where M = Metzler matrix, and its eigenvalues are

Eig(Ag) = {—1.9882, —0.4647, —16.2708, —16.5292} .

Robust decentralized output feedback PI controller

The goal is to design two PI decentralized static out-
put feedback controllers such that the stability of complex
system is guaranteed. Assume, that decentralized control-
lable and observable conditions for system (1) [7], hold.

For tuning parameters 6 = 0.05, v = 0.1 and system
parameters given above the decentralized PI controller
parameters are as follows:

The first subsystem, 7 =1

2.22
R1 (8) = —22.5252 + T .
ST

The first subsystem, j =2

2.2339
RQ(S) = —22.4904 + m .

Note, that sign (-) means the negative feedback. In this
case, to guarantee the Metzler properties of a closed-
loop system (17), integral part of controller should have
positive feedback. Closed-loop eigenvalues for i = 2, and
two cases 6 = 0.05 and 6 = 0.2 given below

0 =10.05

EIG(A.) = {—24.9796, —25.2865, —1.8066,

—0.3907, —0.0009, —0.0028} ,

§=02
EIG(Ag) = {—25.017, —25.3244, —1.8066,
—0.3907, —0.0016, —0.0035} .
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Robust decentralized output feedback P-controller

Closed-loop eigenvalues for § = 0.2;¢ = 2, designed
P-controller for both subsystems with gains Rj(s) =
—16.2526; Ra(s) = —16.299 are as follows

Apn € RM

EIG(As) = {—1.806,—0.3893, —17.9983, —18.308} .

If we compare above three examples, we can clearly
state that for the case when the Metzler conditions are
met the closed-loop system with robust state decentral-
ized feedback controller has the best dynamic properties.
We also have got relatively good results with the decen-
tralized P- controller. The approximate PI controller will
run very slowly.

5 Conclusion

In the present paper, the original method of designing
a robust decentralized controller for linear uncertain and
complex system is given. Task solution is implemented in
two steps. The desired properties of decentralized regula-
tors are calculated in the first step such that to ensure the
stability of the complex system and the required quality
of subsystems control. In the second step, the controller is
proposed so, that the requirements on the decentralized
controllers have been met at a maximum extent. The sec-
ond step analytical solution is not fully resolved so far.
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