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This paper investigates an optimal model-free control design for a synchronous reluctance motor (Syn-RM) with unknown 

nonlinear dynamic functions, parameter variations, and disturbances. The idea is to combine a predictive control with  

a time-delay estimation technique (TDE) in order to successfully deal with the system’s uncertainties and make the Syn-RM 

control scheme easy to implement in real-time. This model-free control strategy comprises two cascade control loops namely 

outer and inner loops. The outer loop is designed for the mechanical part of Syn-RM to ensure the convergence of the speed 

dynamics by using a proportional-integral controller while the inner loop is developed to control the uncertain dynamics of 

currents via an optimal robust controller. In the proposed current loop, the predictive control is enhanced by the inclusion of 

ultra-local model theory where dynamic functions and disturbances are estimated by instantaneous input-output measurements 

of the Syn-RM using the TDE approach. Moreover, a particle swarm optimization (PSO) algorithm is also proposed to find the 

optimal design parameters to improve the dynamic performances of the closed-loop control system. Numerical validation tests 

of the proposed TDE-based model-free predictive current control (TDE-MFPCC) method are performed in the simulation 

environment of the Syn-RM system, and the results show the robustness and the effectiveness of the proposed TDE-MFPCC 

compared to the conventional model-based PCC. 
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1 Introduction 

The synchronous reluctance motor (Syn-RM) is an 

alternating current motor that operates on the principle of 

reluctance torque, as opposed to conventional induction 

motors that rely on the principle of rotor current 

induction to generate torque [1]. Syn-RM uses the 

magnetic reluctance of the rotor to generate torque 

resulting in increased efficiency, power factor, and 

dynamic performance [2, 3]. The Syn-RM machine also 

has a higher starting torque than the traditional induction 

motor making it excellent for applications requiring high 

starting torque [4]. Recent advancements in rotor design 

and high-complexity embedded systems have made this 

motor an attractive option for various applications [5]. In 

addition, its sturdy design is further enhanced by  

a wingless and magnetless rotor. 

The promising potential of the control engineering of 

Syn-RM machines has led to the attraction of many 

researchers to this field of study. Field-oriented control 

(FOC) is a widely used technique for regulating the 

torque and flux of a Syn-RM [6, 7]. By utilizing stator 

current vectors, FOC allows for precise control of the 

motor’s performance. There are two modes in which 

FOC can be implemented. The first is direct field-

oriented control, which involves directly orienting the 

current vectors with their corresponding controllers [8]. 

The second mode is indirect field-oriented control, 

which includes additional torque and flux control loops 

to indirectly regulate the current vectors [9]. Direct 

torque control (DTC) also is a classical method used in 

AC drives, including Syn-RM, that offers advantages 

over FOC in terms of response time [10, 11]. DTC 

enables quick responses to changes in speed and load, 

making it a preferred approach for torque and flux 

control [12]. However, the major disadvantage of this 

approach is the occurrence of high ripples in both flux 

and electromagnetic torque [13-16]. To overcome the 

shortcomings of traditional classical methods, the 

advanced control technique of model predictive control 

(MPC) has been utilized to drive the Syn-RM machine. 

MPC approach has gained popularity among researchers 

for its straightforward design, remarkable dynamic 

performance, and ease of application [17-22].  

The MPC approach has the ability to predict the 

controlled variables, such as current, torque, and flux, in 

the subsequent time step before implementing the 

corresponding control actions. In literature, model 
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predictive control (MPC) can be found in two sub-

methods, namely, model predictive current control 

(MPCC) and model predictive torque control (MPTC). 

In [23], a new method called Direct Predictive Control 

(DPC) was introduced, which minimizes the current 

ripple by selecting the optimal voltage vectors in a 

hierarchical manner. Although MPCC exhibits 

exceptional performance in Syn-RM drives, its 

effectiveness heavily relies on the precise knowledge of 

the system model and its parameters, which may vary 

during operation due to magnetic saturation, iron losses, 

and temperature fluctuations [24]. As a result, 

conventional MPCC may not be effective in real 

applications. 

Various scientific studies have been conducted to 

address the challenges mentioned earlier. A considerable 

amount of attention has been dedicated to the 

development of a model-free MPCC for PMSM [25-27]. 

However, only a limited number of studies have focused 

on Syn-RM. In [24], a model-free PCC based on 

Extended State Observer (ESO) was used to estimate the 

nonlinear unknown dynamics that need to be included in 

PMSM control. The authors in [28] proposed a model-

free PCC based on a recurrent neural network (RNN) for 

Syn-RM. This approach allows compensation of the 

motor parametric variations by updating the weights of 

the RNN. In [29], the current difference detection 

technique (CDDT) is utilized in conjunction with PCC 

to mitigate the impact of parameter changes in Syn-RM. 

Another model-free PCC approach was presented in 

[30], which relied on reconstructing the predicted 

currents from previously stored measurements. The 

disturbance observation methods have also proved their 

effectiveness to compensate for the unknown dynamic 

changes caused by the parameter variations, as presented 

in [31, 32]. 

Time-delay estimation (TDE) is an effective 

technique employed to estimate uncertain and complex 

dynamics in the control system. Overall, the TDE-based 

model-free control method can provide significant 

advantages over other model-free control methods, 

including improved robustness, flexibility to be applied 

to a wide range of systems, reduced tuning effort, less 

implementation complexity, and improved performance. 

This paper presents a model-free control scheme 

designed to address unknown dynamics and parameter 

variations in the Syn-RM system, including inductances 

and stator resistor, using only inputoutput data 

measurements. Here, the current dynamic functions and 

their related parameters are initially considered 

unknown. To address this, ultra-local models are 

employed, as proposed in [33], and the local functions 

are approximated using the TDE technique. This 

approach allows the proposed TDE-based model-free 

predictive current control (TDE-MFPCC) to eliminate 

the need for prior knowledge of a precise current model 

and the identification of parameter values. Thus, the 

proposed controller offers an alternative method of 

control that requires minimal computation and is easily 

implemented in real-time. Furthermore, the control 

parameters are automatically selected using  

a metaheuristic optimization algorithm to achieve the 

best performance of the Syn-RM system.  

The rest of this paper is organized as follows. In 

Section 2, the mathematical model of the Syn-RM used 

in developing the proposed control strategy is presented. 

Section 3, describes the controller design process of the 

conventional model-based current predictive control 

method. The robust model-free current predictive control 

law based on the time-delay estimation technique and 

PSO algorithm is discussed in Section 4. The numerical 

results to demonstrate the effectiveness of the proposed 

control strategy are shown and discussed in Section 5. 

Finally, the conclusions of this paper and some directions 

for future works are given in Section 6. 

 

2 Dynamic model of Syn-RM 

The structure of a Syn-RM consists of a stator with 

a set of windings and a rotor with a set of salient poles. 

The stator winding is energized with a three-phase AC 

supply, which produces a rotating magnetic field that 

interacts with the rotor saliency. As the magnetic field 

rotates, the rotor poles are magnetically attracted to the 

nearest stator pole, resulting in torque production. To 

keep the control system simple, the electrical model of 

Syn-RM is represented in the 𝑑, 𝑞 reference frame of 

the rotor, expressed as: 
 

{
𝜓̇𝑑 = −𝑅𝑠𝐼𝑑 +𝜔𝑒𝐿𝑞𝐼𝑞 + 𝑉𝑑

𝜓̇𝑞 = −𝑅𝑠𝐼𝑞 −𝜔𝑒𝐿𝑑𝐼𝑑 + 𝑉𝑞
(1) 

 

where 𝑉𝑑 and 𝑉𝑞 represent the 𝑑, 𝑞 control voltages 

applied to the Syn-RM, 𝐼𝑑 and 𝐼𝑞 are the corresponding 

currents, 𝑤𝑒 is the electrical angular speed, 𝐿𝑑 and 𝐿𝑞 

stand for 𝑑, 𝑞 inductances, 𝑅𝑠 denotes the stator resistor. 

𝜓𝑑 and 𝜓𝑞 are the flux links approximated by the 

expressions: 

{
𝜓̇𝑑 = 𝐿𝑑𝐼𝑑
𝜓̇𝑞 = 𝐿𝑞𝐼𝑞

(2) 

 

The mechanical speed dynamic is given by: 
 

𝑤̇𝑚 =
1

𝑗
(𝑇𝑒 − 𝐵𝑚𝑤𝑚 − 𝑇𝐿) (3) 

where 𝑇𝑒 is the resulting electromagnetic torque stated 

in (4), 𝑗 and 𝐵𝑚 are the friction coefficient and moment 

of inertia, respectively, and 𝑇𝐿 is the load torque, with p 

denoting the pole pairs number. 

𝑇𝑒 =
3

2
𝑃(𝐿𝑑 − 𝐿𝑞)𝐼𝑑𝐼𝑞 (4) 



346                                                   M. E. Boussouar et al.: Model-free predictive current control of Syn-RM … 

 

 

The electrical dynamic model of the Syn-RM motor 

in the 𝑑, 𝑞 reference frame can be described by the 

following equations: 

 

{
 
 

 
 𝐼𝑑̇ =

1

𝐿𝑑
(−𝑅𝑠𝐼𝑑 + 𝑝𝑤𝑚𝐿𝑞𝐼𝑞 + 𝑉𝑑)

𝐼𝑞̇ =
1

𝐿𝑞
(−𝑅𝑠𝐼𝑞 − 𝑝𝑤𝑚𝐿𝑑𝐼𝑑 + 𝑉𝑞)

(5) 

Figure 1 shows a general structure of the Syn-RM 

rotor, whilst Fig. 2 illustrates the Syn-RM coordinates. 

The 𝑑 and 𝑞 axis are presented with respect to stator 

reference frame 𝛼 and 𝛽. 

From the dynamic model equations (1) to (4), it is 

clearly noted that the Syn-RM system is a nonlinear 

system whose internal parameters are mostly unknown 

and cannot be measured in real-time, such as the 

electrical parameters 𝑅𝑠, 𝐿𝑑, and 𝐿𝑞. The load torque 𝑇𝐿 

in (3) is regarded as an unknown external disturbance 

whose values are dependent on the operating conditions. 

The challenge of Syn-RM control is to ensure stable 

performance throughout the whole operation region 

taking into account any eventual system characteristic 

variation. 

 

  

 

 
Fig. 1. Syn-RM rotor structure 

 
Fig. 2. Syn-RM coordinates 

 

3 Conventional model-based  

current predictive control 

 

The conventional MB-PCC investigated in this 

section consists of two control loops, an outer loop for 

speed control and an inner loop for current predictive 

control. The main purpose of this paper is to address the 

current control problem, whereas the control of the Syn-

RM speed is carried out using a classical proportional-

integral (PI) controller, As depicted in Fig.3, the value of 

current reference 𝐼𝑞∣𝑘
∗  is obtained from the speed control 

loop, and  𝐼𝑑∣𝑘
∗   is calculated based on maximum torque 

per ampere (MTPA) control [28]. The current control is 

performed via a model-based predictive controller that 

uses system parameters to predict current using Euler’s 

approximation. The discrete form of the currents 

predicted in (5) can be written as: 

{
 
 

 
 𝐼𝑑∣𝑘+1 = (1 −

𝑅𝑠𝑇𝑠
𝐿𝑑

) 𝐼𝑑∣𝑘 + 𝜔𝑒𝑇𝑠
𝐿𝑞

𝐿𝑑
𝐼𝑞∣𝑘 +

𝑇𝑠
𝐿𝑑
𝑉𝑑∣𝑘

𝐼𝑞∣𝑘+1 = (1 −
𝑅𝑠𝑇𝑠
𝐿𝑞

) 𝐼𝑞∣𝑘 − 𝜔𝑒𝑇𝑠
𝐿𝑑
𝐿𝑞
𝐼𝑑∣𝑘 +

𝑇𝑠
𝐿𝑞
𝑉𝑞∣𝑘

  (6) 

where 𝐼𝑑∣𝑘 and 𝐼𝑞∣𝑘 are the measured currents at the 𝑘𝑡ℎ 

time step, 𝑇𝑠 is the sampling time, and 𝑉𝑑∣𝑘 and 𝑉𝑞∣𝑘 are 

the applied voltage components. 

The selected voltage vectors are optimized through  

a short iteration algorithm containing the eight possible 

voltage vectors candidates, the cost function equation 

below (6) minimizes the errors between the reference 

currents and their predicted values [34] 

𝑔 = [𝐼𝑑∣𝑘
∗ − 𝐼𝑑∣𝑘+1]

2
+ [𝐼𝑞∣𝑘

∗ − 𝐼𝑞∣𝑘+1]
2
+ 𝐼𝑠𝑎𝑡  , (7) 

where 
𝐼𝑠𝑎𝑡  is a protection constraint value related to the predicted  
current 𝑖𝑠∣𝑘+1 defined as: 

𝐼𝑠𝑎𝑡 = {
∞,    if |𝐼𝑠∣𝑘+1| > |𝐼𝑠𝑚𝑎𝑥|

0,     otherwise. 
,

|𝐼𝑠∣𝑘+1| = √𝐼𝑑∣𝑘+1
2 + 𝐼𝑞∣𝑘+1

2  . (8)

 

The model-based MPC can provide good 

performance and precise control. However, its 

dependence on machine dynamics made this control 
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structure less robust and difficult to implement, 

especially the variation of motor inductances caused by 

magnetic saturation 

Remark 1: In most AC drive control schemes, speed 

control is usually performed using classical PI due to the 

slow dynamics of the mechanical speed and it is less 

affected by parameter changes. In Fig. 3 the speed error 

is minimized with a simple PI control, and parameters 𝐾𝑃 

and 𝐾𝐼 are given in Table 3. 

 

4 Proposed model-free current predictive control 

In this section, a control scheme is suggested that 

combines the PCC approach with model-free control, as 

proposed by Fliss and Joint in [33]. The scheme is made 

more robust through the use of the TDE technique, which 

estimates local unknown dynamics and uncertainties. 

Hence, the nonlinear dynamics of the currents in 

equation (6) are represented by ultra-local models. To 

estimate the local dynamics, the TDE approach is 

utilized, and the Particle Swarm Optimization (PSO) 

algorithm is employed to optimize the design 

parameters. The overall control scheme of the proposed 

method is depicted in Fig. 3. 

 

4.1 Ultra local model 
 

For a given non-linear dynamic system, its general 

ultra-local expression can be written as, 

 

𝑦𝑣 = 𝑓(𝑡) + 𝛼𝑈, (9) 
where  

𝑦𝑣 is the 𝑣𝑡ℎ derivative of the system output 𝑦,  

𝑓(𝑡) is the lumped uncertainties resulting from 

unmodeled dynamics, and unknown 

disturbances, 

𝑈 is the control input signal, 

𝛼 is a given constant. 

 

The complex dynamic model of Syn-RM in (1) can 

be represented by an ultra-local model according to (9) 

as follows: 

 

{
𝐼𝑑̇ = 𝑓𝑑(𝑡) + 𝛼𝑑𝑉𝑑
𝐼𝑞̇ = 𝑓𝑞(𝑡) + 𝛼𝑞𝑉𝑞

(10) 

 

where 𝑓𝑑 and 𝑓𝑞 are the lumped parameter uncertainties 

and nonlinear dynamic functions which are considered 

unknowns, 𝛼𝑑  and 𝛼𝑞 are design constants. In model-

free control design, various techniques were proposed to 

estimate the unknown dynamic functions such as 

extended state observer approach [24], nonlinear 

disturbance compensation technique [25], adaptive 

neural network approximator based on extended Kalman 

filter [28]. In this study, the TDE technique is proposed 

to estimate all the unknown dynamic functions and 

parameter variations. This approach is easy to implement 

since it only requires the measured input/output data of 

the system to compute the unknown functions with a 

small computational burden. 

 

4.2 TDE-based model-free control 

The estimation accuracy of 𝑓𝑑 and 𝑓𝑞  can have an 

impact on control performance since it includes the 

dynamics or disturbances of the system. As a result, the 

solution of 𝑓𝑖  for 𝑖 ∈ {𝑑, 𝑞} becomes a key problem for 

this approach. TDE is frequently utilized to estimate 

unknown nonlinear dynamics, where time-delayed 

signals are used to estimate the lumped uncertainty and 

bring about a simple and useful model-free feature [35]. 

Consequently, using the TDE approach, an acceptable 

approximation of 𝑓 can be obtained; 𝑓𝑖(𝑡 − 𝜀) is 

regarded as the estimated value of 𝑓𝑖(𝑡). As long as the 

time delay is minimal, it is considered 𝑓𝑖(𝑡) ≈ 𝑓𝑖(𝑡) ≈
𝑓𝑖(𝑡 − 𝜀), and thus:  

 

𝑓𝑖(𝑡) = 𝑦̇𝑖(𝑡) − 𝛼𝑈𝑖(𝑡) (11) 
 

𝑓𝑖(𝑡) ≈ 𝑓𝑖(𝑡 − 𝜀) = 𝑦̇𝑖(𝑡 − 𝜀) − 𝛼𝑈𝑖(𝑡 − 𝜀) (12) 
 

To achieve a stable control output and prevent 

excessive chattering, a low pass filter (LPS) is introduced 

in the calculation of 𝑓𝑖(𝑡). Additionally, fast converging 

gains 𝛽𝑑 and 𝛽𝑞 have been incorporated into the 

proposed TDE to expedite the convergence of the control 

algorithm. The values of  𝑓𝑑  and 𝑓𝑞 are thus estimated 

using the following formulas: 
 

{
𝑓𝑑(𝑡) = 𝛽𝑑[LPS[𝐼𝑑̇(𝑡 − 𝜀) − 𝛼𝑑𝑉𝑑(𝑡 − 𝜀)]]

𝑓𝑞(𝑡) = 𝛽𝑞 [LPS[𝐼𝑞̇(𝑡 − 𝜀) − 𝛼𝑞𝑉𝑞(𝑡 − 𝜀)]]
(13) 

 

First-order LPS is adopted, with the transfer function 

given as follows: 
 

{
 
 

 
 ℎ𝑑(𝑃) =

1

1
𝑤𝑑

𝑃 + 1

ℎ𝑞(𝑃) =
1

1
𝑤𝑞
𝑃 + 1

(14) 

 

where 𝑤𝑑 and 𝑤𝑞 are the cut-off frequencies to be 

optimized, the coefficients 𝛼𝑑,𝑞 are selected close to the 

reversed rated inductances 𝑑, 𝑞 respectively, that are  
 

𝛼𝑑 =
1

𝐿𝑑
 and 𝛼𝑞 =

1

𝐿𝑞
. 

The discrete version of (10) can be obtained using Euler 

approximation as follows: 
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{
𝐼𝑑∣𝑘+1 = 𝑓𝑑∣𝑘𝑇𝑠 + 𝛼𝑑𝑉𝑑∣𝑘𝑇𝑠 + 𝐼𝑑∣𝑘

𝐼𝑞∣𝑘+1 = 𝑓𝑞∣𝑘𝑇𝑠 + 𝛼𝑞𝑉𝑞∣𝑘𝑇𝑠 + 𝐼𝑞∣𝑘
(15) 

 

where 𝐼𝑑,𝑞∣𝑘 and 𝑉𝑑,𝑞∣𝑘 are the 𝑑, 𝑞 currents and input 

voltage respectively, 𝑇𝑠  stands for the sampling time. 

 

Assumption 1: The estimated values of 𝑓𝑑(𝑡) and 𝑓𝑞(𝑡) 

are considered bounded such that |𝑓𝑑(𝑡)| ≤ Δ𝑑    and 

|𝑓𝑞(𝑡)| ≤ Δ𝑞  , where Δ𝑑 and Δ𝑞 are the upper 

boundaries of 𝑓𝑑(𝑡) and 𝑓𝑞(𝑡) , respectively.  

 

Remark 2: The inclusion of derivative terms in TDE 

equations has led to high fluctuations in the estimated 

values of 𝑓𝑑  and  𝑓𝑞 , as shown in equation (13). In order 

to address this issue, a Low Pass Filter (LPS) has been 

incorporated in the TDE output to reduce the ripple 

effect. 
 
 
 

 

4.3 Optimization of the TDE-MFPCC  

using particle swarm algorithm (PSO) 

In the proposed control scheme, the coefficients 

𝛽𝑑,𝑞 and LPS cut-off frequencies 𝑤𝑑,𝑞  are optimized 

with PSO algorithm, which is a computational technique 

for optimizing a particular problem by iteratively 

attempting to improve a candidate solution in relation to 

a specified quality measure. In the process of PSO, it 

begins by selecting a random set of unknown parameter 

values, with each set representing a particle swarm, the 

goal function corresponding to each particle is computed 

using each position and velocity of the current particle, 

Then, the particle whose objective value matches to the 

optimal value is picked and recorded after each iteration 

of the algorithm, and ultimately the global best solution 

is generated [35], The PSO process flowchart is depicted 

in Fig. 4. 
 

 

 
 

Fig. 3. Proposed TDE-MFPCC block diagram 

 
 

𝛽𝑑,𝑞  used in (13) is defined through the PSO algorithm 

process based on the minimization of the cost function 

𝐺𝛽 : 
 

{

𝐹𝑖𝑛𝑑 𝑋 = (𝛽𝑑 , 𝛽𝑞)

𝐺𝛽 =  To minimize 𝑜𝑏𝑗(𝑋) =

= 𝑚𝑖𝑛[(𝐼𝑑∣𝑘
∗ − 𝐼𝑑∣𝑘+1) + (𝐼𝑑∣𝑘

∗ − 𝐼𝑑∣𝑘+1)]

(16) 

 

The total harmonic distortion (THD) of the three-

phase currents (a, b, c) measurement is minimized to 

achieve optimal settings 𝑤𝑑,𝑞  according to the cost 

function 𝐺𝑤 defined as: 

 

{

𝐹𝑖𝑛𝑑 𝑋 = (𝑤𝑑 , 𝑤𝑞)

𝐺𝑤 =  To minimize 𝑜𝑏𝑗(𝑋) =

= 𝑚𝑖𝑛[𝑇𝐻𝐷𝑎 + 𝑇𝐻𝐷𝑏 + 𝑇𝐻𝐷𝑏]

(17) 

 

The swarm particle velocity 𝑣𝑖(𝑡 +  1) is updated using 

the last best global solution 𝑝𝑔 as stated in the 

following: 

𝑣𝑖(𝑡 + 1) = 𝑤𝑣𝑖(𝑡) + 𝑐1𝑟1(𝑝𝑖 − 𝑥𝑖(𝑡)) +

+ 𝑐2𝑟2 (𝑝𝑔 − 𝑥𝑖(𝑡)) (18)
 

where 𝑤 is the inertia weight, 𝑐1 and 𝑐2 represent the 

cognition learning and the social learning factors, 

respectively, and 𝑟1, 𝑟2 ∈ [0,1] are generated random 
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numbers, 𝑝𝑔 is the current best global position, whilst 𝑝𝑖 

denotes the local best position of the current PSO 

iteration. The new position is then updated as follows: 

𝑥𝑖(𝑡 + 1) = 𝑥𝑖(𝑡) + 𝑣𝑖(𝑡 + 1). (19) 

The pseudo-code written in Algorithm.1 represents a 

brief description of the PSO process used for parameters 

optimization through 100 iterations of 10 swarm particle 

candidates. 

Remark 3: There are many optimization techniques in 

the literature to achieve an optimum solution for a given 

problem. This paper chooses a PSO algorithm to find the 

best control parameters due to its favorable 

characteristics and suitability in such optimization 

issues. 

 

 

Algorithm 1: Pseudo-code of the PSO algorithm 

Cost function 𝐆𝒏 for 𝐧 ∈ {𝜷𝒅, 𝜷𝒒, 𝒘𝒅, 𝒘𝒒} 

Swarm initialization: the position 𝒙𝒊(𝒕) and velocity 
𝒗𝒊(𝒕) are initialized randomly  
for 𝒕 ← 𝟏 to 100 (Iteration number) 
for 𝒊 ← 𝟏 to 10 (Swarm size) 
Evaluate and update the local best 𝑮𝒏(𝒑𝒊(𝒕)) based 
on the result of (16) and (17) 
 if 𝑮𝒏(𝒙𝒊(𝒕)) < 𝑮𝒏(𝒑𝒊(𝒕)) then 
update the best position 𝒑𝒊(𝒕), that is 𝒑𝒊(𝒕) = 𝒙𝒊(𝒕) 
end if 
end for 

𝑮𝒏(𝒑𝒈(𝒕)) = 𝐦𝐢𝐧𝒊  (𝑮𝒏(𝒑𝒊(𝒕))) 

Evaluate and update the global best 𝑮𝒏(𝒑𝒈(𝒕)) after 

each swarm iteration update particle velocity 𝒗𝒊(𝒕 +
𝟏) using (18) 
update particle position 𝒙𝒊(𝒕 + 𝟏) using (19) 
end for 
Rank the solutions and find the global best of 𝜷𝒅,𝒒 

and 𝒘𝒅,𝒒. 

 

 

Table 1. Syn-RM parameters 

Parametre  Value 

Rated power 

Rated current  

Rated speed  

Rated Torque 

No of pole pairs   

Moment of inertia (J)  

Stator resistance 

2.2 kW 

5.7 A 

1500 rpm 

14 N.m 

2 

0.0137 kg.m/s 

1.71 Ω 

  

Fig. 4. Flowchart of particle swarm optimization 

algorithm 

 

5 Simulation and discussion 

The simulation of the proposed control was 

conducted in MATLAB/Simulink, where a non-linear 

model of Syn-RM was implemented in the overall 

scheme, with nominal parameters presented in Table. I. 

The sample time is set to 0.00005 s as well as the delay 

time used in TDE estimation equation (13). For a fair 

comparison between the proposed method and the 

conventional MB-PCC, the same PI speed controller 

parameters were tuned for both strategies, in order to 

simulate the effect of parameters mismatch on Syn-RM 

PCC control both 𝐿𝑑  and 𝐿𝑞 are set to 50 % of their rated 

values. The results of the last iteration of PSO process 

are presented in Fig. 15 and Fig. 16 in appendix for 𝛽𝑑,𝑞  

and 𝑤𝑑,𝑞 employed in (13), (14) respectively, containing 

the local best value of each swarm (small blue stars) and 

the globally optimal solution (big orange stars). 

 

5.1 Load change burden 

Figure 5 shows the simulation results of the 

conventional MB-PCC and the proposed TDE-MFPCC 

approach for the same test run scenario under identical 

initial operating conditions. Initially, a load of 10 Nm 

was applied and the speed reference is set to 1500 rpm 

(rated value). Subsequently, at t=2 s, the load was 

incrementally increased to the rated value of 14 Nm. 

Figure 5(a) depicts the outcomes of MB-PCC with 

precise motor parameters. The speed response is 

showcased in the first channel, while the second channel 
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displays the phase (A) current. The third channel 

exhibits the obtained response of 𝐼𝑑,𝑞  as well as their 

references 𝐼𝑑,𝑞
∗ . It is clear that the effectiveness of MB-

PCC’s performance becomes evident when accurate 

motor parameters are taken into account in the control 

process. Fig. 5(b) depicts the responses obtained using 

MB-PCC with mismatched model parameters, where 

increased current THD. It is clear that the current 

response deviates more from the target signal when the 

load increases. The results of the suggested TDE-

MFPCC are depicted in Fig. 5(c). In contrast to the MB-

PCC, the proposed control scheme has better steady-

state performance and less THD. The lumped 

uncertainties estimate 𝑓𝑑̂ and 𝑓𝑞̂ response is shown in 

Fig.13, where steady-state performance is achieved 

owing to the system dynamic behavior reflected by the 

TDE technique.  

 
 

 
 

 



Journal of Electrical Engineering, Vol. 74, No. 5, 2023                                                           351 

 

 

 

Fig. 5. Simulation results under a load change: (a) conventional MB-PCC with accurate parameters;  

(b) conventional MB-PCC with mismatched parameters; (c) proposed TDE-MFPCC 

 

 

 

 

 

 

 

 

Fig. 6. 𝐼𝑑 current tracking error  

under load change 
Fig. 7. 𝐼𝑞 current tracking error  

under load change 

Fig. 8. 𝐼𝑑 current tracking error  

in function of load torque 

Fig. 9. 𝐼𝑞 current tracking error  

in function of load torque 
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Figures 6 and 7 depict the current tracking errors for 

𝐼𝑑 and 𝐼𝑞 of the presented control schemes when the Syn-

RM is under the effect of load torque. It is clear also that 

the parameter mismatch has a significant effect on the 

current control. Besides, in the MB-PCC with accurate 

parameters and the proposed TDE-MFPCC, the tracking 

errors were reduced significantly in the load change case. 

To further highlight the robustness of the proposed 

control scheme compared to the other control 

approaches, the chart of tracking errors of  𝐼𝑑  and 

𝐼𝑞 according to the multivariate load torque have been 

also shown in Fig. 8 and Fig. 9. It can be seen that when 

using MB-PCC with mismatched parameters, the 𝐼𝑞 error 

increases proportionally with load variation. Whereas, 

the proposed TDE-MFPCC reduces the gap between the 

current reference and its actual value similar to MB-PCC 

with accurate parameters. 

 

5.2 Speed variation burden 

Figure 10 depicts the simulation results of the 

aforementioned control methods, where a speed 

variation test was conducted. The initial load was set to 

10 Nm, and the speed was set to 800 rpm. Subsequently, 

at t=1.8 s, the speed was incremented to its rated value 

of 1500 rpm. The obtained results in Fig. 10 (b) indicate 

that the parameter mismatch has also a considerable 

effect on conventional MB-PCC in speed variation 

cases. The third channel of Fig. 10 (b) shows the 𝐼𝑞 

current error that increases significantly with the speed 

variation, while the TDE-MFPCC was less affected by 

speed change, see Fig. 11 and Fig. 12. Considering the 

values of THD, the current distortion has been reduced 

thanks to the disturbance compensation function 

provided by the TDE technique. In Fig. 10 (b), the MB-

PCC Phase (A) response shows the effect of inaccurate 

parameters which led to a high THD value compared to 

the TDE-MFPCC. Phase (A) THD has a lower value 

compared to the MB-PCC with exact parameters as 

depicted in Fig. 10 (a). For further analysis of the 

proposed TDE-MFPCC method, the lumped 

uncertainties estimated 𝑓𝑑̂  and 𝑓𝑞̂ are illustrated in Fig. 

14. Here, one can conclude that the evolution of the 

unknown current dynamics is well compensated during 

the speed variation test using TDE formulation. Also, it 

is seen that the parameter mismatch has a significant 

effect on the current control when the speed increases. 

Unlike, the MB-PCC with accurate parameters has less 

current deviation. To sum up, the obtained result within 

the simulation tests compared issues of the three 

presented schemes MB-PCC and TDE-MFPCC were 

illustrated in Table 2. 
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Fig. 10. Simulation results under speed change: (a) conventional MB-PCC with accurate parameters,  

(b) conventional MB-PCC with mismatched parameters, (c) proposed TDE-MFPCC 
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Fig. 11. 𝐼𝑑 current tracking error    Fig. 12. 𝐼𝑞 current tracking error  

under speed variation     under speed variation 

 

Table 2. Comparative issues 

Syn-RM PCC scheme 
Computation 

time 

Motor parameters 

needed 

Algorithm 

complexity 

Tuned 

parameters 

Conventional MB-PCC 27.5 𝜇s 𝑅𝑠, 𝐿𝑑 , 𝐿𝑞  Low Null 

Proposed TDE-

MFPCC 
26.0 𝜇s Null Low 𝛽𝑑,𝑞 , 𝑤𝑑,𝑞 

6 Conclusions 

In this paper, a new optimal model-free predictive control 

approach for Syn-RM drive based on a time-delay estimation 

(TDE) technique has been proposed. By combining the model-

free control theory and the TDE approximator, this proposed 

control system is able to deal with uncertainties and 

disturbance problems and allows it to give a robust and 

straightforward control scheme that can be implemented in 

real-time applications. By introducing a particle swarm 

optimization (PSO) metaheuristic algorithm, the control 

design parameters were optimized to improve the electrical 

dynamic performances of the Syn-RM system. To give more 

simplicity, the speed control is implemented by the 

conventional proportional-integral controller in the outer loop, 

whereas the proposed TDE-based model-free predictive 

current control (TDE-MFPCC) is employed in the inner loop 

to effectively stabilize the internal dynamics of the Syn-RM 

machine. Extensive numerical results have been presented to 

illustrate the best performance of the proposed control 

algorithm in comparison with the conventional model-based 

predictive controller. In the future, the proposed controller will 

be tested on a real device dealing with the limits of the control 

saturation and using robust observers to estimate the system 

states. 

 

 

Table 3. Simulation settings 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters Value 

Proportional gain 𝐾𝑃 

Integral gain 𝐾𝐼  
D-axis inductance 𝐿𝑑 

Q-axis Inductance 𝐿𝑞 

𝛼𝑑 

𝛼𝑞 

𝛽𝑑 

𝛽𝑞 

𝜔𝑑 

𝜔𝑞 

PSO swarm set number 

PSO iteration number 

Sampling time 𝑇𝑠 

0.2 
0.8 
0.26 H 
0.057 H 
4.1 
17.5 
2.6 
22.1 
167.3 rad/s 
153.8 rad/s 
10 
100 
50 𝜇s 
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