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Many speech processing systems’ crucial frontends include speech enhancement. Single-channel speech enhancement 

experiences a number of technological challenges. Due to the advent of cloud-based technology and the use of deep learning 

systems in big data, deep neural networks in particular have recently been seen as a potent means for complex classification 

and regression. In this work, spectral gating noise filter is combined with deep neural network U-Net to enhance the 

performance of speech enhancement network. Further, for performance analysis three distinct objective functions namely, 

Mean Square Error, Huber Loss and Mean Absolute Error are considered as loss functions. In addition, comparison of three 

different optimizers Adam, Adagrad and Stochastic Gradient Descent is presented. Proposed system is tested and evaluated 

on LibriSpeech and NOIZEUS datasets and compared to other state-of-the-art systems. It demonstrates that, in comparison to 

other state-of-the-art models, the proposed network outperformed them with PESQ scores of 2.737420 for training and 

2.67857 for testing, along with better generalization ability.  
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1 Introduction 

Recently, in the realm of speech processing, speech 

enhancement has gained a lot of popularity. Generally, 

speech is invariably corrupted by additive noise, echo 

and reverberation in real-world applications, for 

example, background noise from different sound 

sources such as other speakers, distortion in voice being 

delivered to the far-end audience, spoken conversation 

over cell phones and conference calls. Furthermore, 

hands-free devices necessitate the amplification or 

isolation of the near-end speaker's voice from intrusive 

speakers and ambient sounds [1]. These distortions 

reduce speech quality and intelligibility, particularly 

when the signal-to-noise ratio (SNR) is low. Speech 

enhancement, for attenuating acoustic interference, 

would greatly facilitate a variety of acoustic 

applications, including ASR, hearing aids, acoustic-

based control, speaker identification, human-machine 

interaction, and mobile communications [2]. 

Furthermore, speech enhancement and separation are 

also important pre-processing measures in today's 

personal assistants, GPS, video game consoles, and 

medical dictation systems for reliable comprehension 

[3]. Recently, deep learning (DL) has demonstrated 

remarkable success for a wide range of learning tasks in 

multiple domains. DL has shown optimal performances 

in many domains such as speech enhancement [4], 

spoofing in e-health digital twin [5], spoofing attack on 

the fingerprint scanners [6], ASR via wireless sensors 

[7], natural language processing (NLP) [8] and acoustic 

noise suppression [9] in recent years. Presently, there 

has been a lot of study into improving speech in noisy 

environments. Therefore, speech enhancement has been 

increasingly prevalent and has received a lot of 

attention in the realm of speech processing. 

Speech enhancement's primary purpose is to 

minimize the noise from noisy speech in order to 

recreate clean speech, thus improving SNR and the 

intelligibility of noise-corrupted speech [10]. Single-

channel speech enhancement is difficult task with one 

microphone whereas multi-channel voice amplification 

is a successful solution where many microphones are 

present because it takes advantage of spatial input. 

Moreover, the two main categories of speech 

enhancement are supervised learning methods and 

unsupervised learning approaches. The first is 

additionally referred to as the traditional speech 

enhancement technique. This kind of approach has  

a low computational and hardware need and does not 

rely on priori speech information. As a result, its real-

time performance is usually good [11]. The spectral-

subtraction approach [2,12], Wiener filtering [2,13], 

minimum mean square error (MMSE) method [14] and 

subspace method [2] are examples of traditional speech 

enhancement algorithms. Unsupervised speech 

enhancement performs well in contexts with high SNR 

and stationary noise, but poorly in environments with 

low SNR and non-stationary noise, according to recent 
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research [15]. Recently, several efforts have been made 

to apply U-Net architectures to speech enhancement 

tasks [16], which was first introduced for biomedical 

image segmentation [17]. Recently, U-Net has been 

trained to predict a noise-reduced version of the input 

signal, given a noisy version of the signal as input [16]. 

Furthermore, noisy speech in same domain was 

improved using U-Net along with discrete cosine 

transform (DCT) without the need of adversarial 

training [18]. Another application of Wave-U-Net [19] 

was to improve speech in the time-domain without 

GAN.  In addition to this, researchers utilized Wave-U-

Net [20] to improve speech in the time-domain with a 

smaller number of hidden layers. In this work, spectral 

gating along with U-Net-based denoising is proposed to 

enhance the quality of mix speech signal by removing 

non-speech sound. Mix speech signal is obtained from 

one speaker blended with different noises. Moreover, 

performance analysis of three optimizers with different 

number of epochs is carried out, in this study. 

 

2 Speech enhancement model 

2.1 Mathematical notation 

In this work, for real-time applications, 

a mathematical model for single-channel speech 

enhancement is described in this subsection. 

Considering an audio noisy signal, x∈RT, contains 

a clean speech signal y∈RT, that is corrupted by an 

additive background noise n∈RT, such that x=y+n. 

Since the speaker utterances have fixed duration for 

samples, T has a fixed value. The aim is to determine 

an enhancement function f such that f(x) ≈ y.  

Here, f is estimated using the U-Net architecture, 

which was initially developed for the goal of 

segmenting biological images and subsequently 

adapted for the task of speech enhancement. By taking 

into account that yi is the true value, xi is the predicted 

value, error is computed for deep neural network 

(DNN). 

 

2.2 Proposed architecture 

In this work, proposed architecture consists of 

spectral gating to enhance the quality of noisy speech 

signal along with U-Net which is a DNN. The 

combination of spectral gating with U-Net becomes 

a powerful tool to remove both types of static and 

random noise from speech signal. But, this combination 

poses following challenges: 

 

Integration of spectral gating 

The primary challenge in this work is dealing with 

random noise present in the speech. This requires to 

filter speech signal through an appropriate filter before 

feeding to deep neural network. Combining spectral 

gating with a deep neural network introduces the 

challenge of effectively fusing these techniques.  

 

Algorithm complexity 

Deep neural networks, such as U-Net are intricated 

in nature and require substantial computational 

resources. Issues related to training time, resource 

allocation, and model optimization pose difficulty. 

 

Hyperparameter tuning 

Neural networks often involve a variety of 

hyperparameters that need careful tuning to achieve 

optimal performance. 

 

Generalization and overfitting 

Generally, models are overfit with a small dataset 

but by training the model with so many samples and 

iterations tasks are overfitted. Therefore, to overcome 

overfitting challenge a dropout layer has been 

implemented in the proposed network. Furthermore, to 

get a generalized model an adequate amount of varied 

dataset is used for network training. 

 

 

Fig. 1. Proposed architecture for speech enhancement 

 

Figure 1 depicts that initially, a noisy speech signal 

containing speech and the noise is provided as input to 

spectral gating noise filter which is a unique filter. It 

removes static and some random noise added in the 

signal. Further splitting of audio signal is carried out to 

break the signal into small chunks of fixed length. 

Finally, to enhance the quality of speech signal DNN is 

used which removes rare noise. Here, U-Net is 

considered for this. It is evident that DNN attenuates 

the rare noise signals, which is denoted as a loss 

function. Loss function is evaluated by comparing 

predictions Y’ from U-Net and true values Y. Based on 

this, a loss score is generated which is considered the 

objective function and serves as input to the optimizers 

for updating the weights for every epoch. 
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Spectral gating 

Spectral gating is a type of noise gate. A central 

frequency and bandwidth parameters are used 

partitioning the incoming signal into its above and 

below frequency ranges. The threshold gates stated 

above are set using a noise gate by the spectral gating 

technique. The open gate is another term for the lower 

gate since the signal that crosses above the lower gate 

threshold will be captured. The higher gate is known as 

a closed gate if the signal reaches the designated upper 

threshold, at which point the gate closes and the signal 

ceases to be recorded. As a result, the open and close 

gate thresholds must be adjusted over time. The signal 

between the two gates is carefully taken into account, 

and the signal above or below is regarded as noise. 

Thus, just the necessary or noise-reduced audio will be 

available at the output [16]. 

 

U-Net architecture 

It is a U-shaped encoder-decoder network architect-

ture which is collectively built by joining several 

convolution layers followed by other necessary layers. 

It is comprised of an expanding and contracting path. 

The path of contraction follows the typical design of  

a CNN, for example. It consists of two 3×3 recurrent 

convolutions (unpadded convolutions), each followed 

by a rectified linear unit (ReLU). Similar to VGG and 

ResNet, encoder is a pre-trained classification network 

where convolution blocks are typically followed by 

maxpool downsampling. The decoder uses upsampling 

followed by concatenation, and at last standard 

convolution processes. The audio signal vector feature 

space has been downsampled to a fixed size and then 

upsampled to the same size as provided in the first 

layer. One important characteristic of this DNN is that 

it has very few parameters [21]. 

There are certain factors that affect the performance 

of the proposed model. As it has been shown in Fig. 1, 

the input to the model is a noisy speech signal, which is 

first processed by the spectral gating noise filter to 

remove static and some random noise. Then, in the 

subsequent stage, known as Audio Splitting, the audio 

signal is split into small chunks of fixed length. 

Random noise and variation in length of the chunks are 

the main factors that affect the performance of the 

proposed speech enhancement system. 

 

3 Experimental configuration 

For experimental purpose, based on PyTorch, 

SpeechBrain [22] toolkit is used. SpeechBrain is an 

open-source, all-inclusive speech toolkit, whereas, 

PyTorch is an open-source machine learning library. 

Google Colab is used to train the model.  

 

3.1 Dataset 

A substantial corpus of read English speech, the 

LibriSpeech dataset [23], is around 1000 hours long 

and is typically sampled at 16 kHz. Data are taken from 

audio books on LibriVox for randomly chosen 

speakers. The dataset used in this study for speaker 1 

(S1) is 2.5 hours long and sampled at 16 kHz. Further, 

chunks of 2 seconds in length are created, producing 

4515 files altogether. In order to train the speech 

enhancement network from the chunks of speaker 1, the 

original dataset is processed to create noisy signals. 

Mix signal is blended at 0 dB level with noise signals 

from the NOIZEUS database [24] which contains an 

airport, babble (crowd of people), automobile, 

exhibition hall and restaurant noise files. The noise files 

include recordings from various places to give 

a glimpse of different real-time noise. 

 

3.2 U-net implementation summary 

Generally, U-Net architecture has ReLU but in this 

work, U-Net has leaky ReLU activation layer after each 

convolution layer. Equation (1) gives the function for 

leaky ReLU as below: 

f (x) = max (0.01 x, x)   (1) 

Leaky ReLU provides a very little linear component of 

x which is 0.01 to negative inputs in order to solve the 

issue of zero gradient for negative values. The ReLU 

function's range is widened with the help of the leak. 

Further, a 2×2 maximum pooling operation with 

stride 2 for downsampling is considered. To avoid 

overfitting and enhance model performance overall, 

dropout layer is used. The size at the first convolution 

layer is taken as 128×128. The audio signal vector 

feature space has been downsampled to 8 and then 

upsampled to the same size as provided in the first 

layer. The number of feature channels doubles with 

each step of downsampling. An upsampling of the 

feature map, a 2×2 convolution (“up-convolution”) that 

divides the set of feature channels in half, 

a concatenation with the similarly cropped feature map 

from the contracting path, and two 3×3 convolutions, 

each accompanied by a Leaky ReLU, are all included 

in each step along the expanding path. Cropping is 

necessary since every convolution result in the loss of 

boundary pixels. Further, final layer uses a 1×1 

convolution to transfer signal vector to the appropriate 

output by using tanh activation function. The final layer 

is settled with Tanh activation function whereas the 

other layers are followed by Leaky ReLU activation 

layer. Network is trained by taking 1000 samples,  

10 epochs. Batch size is considered as 10. Network 

summary is given below: 
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• Padding type: Unpadded 

• Activation function: Leaky ReLU (in hidden layers) 

and tanh (in output layer). 

• Optimizer: The experiment uses three different 

optimizers, each one at a different execution period. 

The optimizers that have been considered are Adam, 

Adagrad, and Stochastic Gradient Descent (SGD), 

with different numbers of epochs as an experimental 

procedure. The execution took place with 50, 100, 

and 150 numbers of epochs for result formulation.  

• Objective function: For training error and Testing 

error three objective functions MSE, Huber loss and 

MAE are used for continuous result generation at 

each iteration. 

• Evaluation metrics: For the evaluation purpose the 

compile function has been treated with two different 

evaluation measures while training and testing 

which are perceptual evaluation of speech quality 

(PESQ) and STOI metrics [25].  

The signal-to-noise ratio (SNR), which can be used 

with any signal, is the most used technique for 

objective evaluation for any speech enhancement 

model. A more specialized speech evaluation method is 

required to provide performance measurement for the 

speech signal that is more pertinent. Perceptual 

Evaluation of Speech Quality (PESQ) was created for 

this purpose by the International Telecommunication 

Union, Telecommunication Standardisation sector 

(ITU-T) in its P.862 Recommendation [26]. PESQ, one 

of the common metrics connected to human perception, 

has been shown to have a strong association with the 

quality ratings given by humans. A degraded audio 

sample's subjective opinion scores are predicted by the 

PESQ Algorithm. PESQ provides a score ranging from 

4.5 to – 0.5. Higher scores denote higher quality.  

Further, the evaluation of intelligence is necessary 

in speech enhancement models in order to interpret 

speech signals that have had their quality decreased due 

to additive noise and single- or multi-channel noise 

reduction. Short-Time Objective Intelligibility (STOI) 

measures objective machine-driven intelligibility and 

has a value range of 0 to 1. Its goal is to assess noise-

reduction algorithms. STOI is a measure of 

intelligibility. STOI-measure is defined as a function of 

the clean and degraded speech signals. The higher 

STOI score indicates the better intelligibility. 

 
 

   

(a) (b) (c) 

Fig. 2. Simulation results of Adam optimizer for 50 epochs using objective function:  

(a) MSE, (b) Huber Loss, (c) MAE 

 

4 Result and discussion 

For speech enhancement network, the experiment 

uses three different optimizers, each one at a different 

execution period. Further, comparative analysis of three 

objective functions for U-Net model with three 

optimizers is performed. Figure 2 shows simulation 

results for Adam optimizers at 50 epochs with three 

objective functions MSE, Huber Loss and MAE, in 

Figs. 2a, b and c, respectively. 

Figure 3a compares the performance of Adam, 

Adagrad and SGD for training a speech enhancement 

model for different numbers of epochs. Increasing the 

number of epochs means training the model for more 

iterations, allowing it to potentially learn more complex 

relationships in the data. The evaluation metric 

considered is MSE. A lower Training MSE value 

indicates a better fit of the model to the training data. 

During simulation it is found that the Training MSE 

values decrease on increasing number of epochs from 

0.002858 (for Adam with 50 epochs) to 0.002313 (for 

Adam with 150 epochs). Testing MSE, on the other 

hand, measures the average squared difference between 

the predicted values and the actual values of the target 

variable on a separate test dataset, which is not used 

during the training process. A lower Testing MSE value 

indicates a better generalization performance of the 

model to unseen data which is obtained at epoch 50. It 

is observed from simulation that Testing MSE values 

are increased slightly on increasing the no. of epochs 

which shows model is overfit for objective function 

MSE as the Testing MSE value is increasing while the 

Training MSE value is decreasing. Hence, a good 

model should have a low Testing MSE, while avoiding 

overfitting by keeping the Training MSE and Testing 

MSE values close to each other. 
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Furthermore, Fig. 3b shows the results of running 

different optimization algorithms (Adam, Adagrad, 

SGD) for different numbers of epochs (50, 100, and 

150) with mean absolute error (MAE) for both training 

and testing datasets. As it is clear from Fig. 3b the 

Training MAE values decrease on increasing number of 

epochs from 0.028876 (for Adam with 50 epochs) to 

0.021579 (for Adam with 150 epochs). It indicates that 

the model is improving its predictions with more 

training. On the other hand, the testing MAE scores 

initially increase slightly, when epochs are increased 

from 50 to 100 which may indicate overfitting of the 

model to the training data. Though after 100 epochs, 

testing MAE values are decreasing on increasing 

epochs to 150. Finally, for MAE objective function 

lowest value is achieved at 150 epochs for testing 

dataset.

 

   

(a) (b) (c) 

Fig. 3. Performance analysis for three optimizers: (a) using MSE, (b) using MAE, and (c) Huber Loss  

(AM, AD, SG stand for Adam, Adagrad and Stochastic Gradient Descent respectively). 

 

In addition, Fig. 3c compares the performance of 

three optimization algorithms for training a speech 

enhancement model for different numbers of epochs 

(50, 100, and 150) for Huber loss. Huber Loss is less 

sensitive to outliers compared to mean squared error, 

making it a robust loss function. A lower Training 

Huber Loss value indicates a better fit of the model to 

the training data. The Training Huber Loss values in 

the graph range from 0.001429 (for Adam with 50 

epochs) to 0.001207 (for Adam with 150 epochs). 

Testing Huber Loss, on the other hand measures the 

average difference between the predicted values and 

the actual values of the target variable on a separate test 

dataset, which is not used during the training process. 

The Testing Huber Loss values in the graph range from 

0.001777 (for Adam with 50 epochs) to 0.0016829 (for 

Adam with 150 epochs). A lower Testing Huber Loss 

value indicates a better generalization performance of 

the model to unseen data. 

Further, simulation results indicate that for Adagrad 

optimizer, increasing the number of epochs leads to 

lower data particularly from 50 epochs to 100 epochs 

for all three objective functions. After this when epochs 

are increased to 150 then a slightly increment is 

observed in Training and Testing values. Thus, it can 

be concluded that Adagrad optimizers is not showing 

good performance for training data which leads to 

towards worst performance among three optimizers. 

Further, SGD optimizer shows performance in between 

Adam and Adagrad optimizers. The training values are 

continuously decreasing on increasing number of 

epochs from 50 to 150, whereas, testing values show 

the same pattern as in case of Adam optimizers with 

high values of objective functions. It can be inferred 

simulation results that Adam optimizer outperforms the 

other two optimizers for objective function Huber Loss 

at 150 epochs. 

Furthermore, the performance of the optimizer can 

be evaluated by examining the PESQ and STOI scores 

of the training and testing data at different epochs.  

PESQ is a measure of the quality of speech signals, 

with higher scores indicating better quality. Moreover, 

new research demonstrates a strong correlation between 

speech intelligibility and STOI predictions of noisy 

speech improved using DNN-based speech enhance-

ment systems. As a result, STOI is now the speech 

intelligibility estimate that is arguably most frequently 

used for objectively assessing how well speech 

enhancement systems work [27]. In addition, 

comparative analysis of evaluation metrics PESQ and 

STOI for different number of epochs of speech 

enhancement model using U-Net is carried out. 

Training simulation results shown in Fig. 4a indicate 

that, initially, PESQ score of the training data is 

improving as the number of epochs are increased up to 

100 for each optimizer. This demonstrates a gain in 

performance is obtained on increasing number of 

epochs. After that there is a significant degrade in 

performance of Adam and Adagrad optimizers, 

whereas in case of SGD optimizer, it keeps on 

increasing up to 150 epochs. Further, in SGD optimizer 

PESQ score is lower than other two optimizers. 
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Moreover, the testing PESQ score decreases with 

increasing number of epochs but slightly lower than the 

training PESQ score. This indicates that the model 

performed better on the training data than on the 

unseen testing data, which could be a result of 

overfitting. The highest PESQ score was achieved by 

the Adam optimizer at epoch 100with a score of 

2.7374. Here, it is observed that overall, Adam 

optimizer outperforms the other two optimizers. SGD 

shows better performance in comparison to Adagrad 

optimizer as performance is not degraded on increasing 

epochs beyond 100 for training. Furthermore, the 

lowest PESQ score was achieved by the Adam 

optimizer at epoch 150, with a score of 1.1087. The 

results suggest that the choice of optimizer and the 

number of epochs can have a significant impact on the 

performance of the model. 

Additionally, Fig. 4b shows the performance of 

three different optimizers (Adam, Adagrad, and SGD) 

in terms of STOI scores during different epochs. It can 

be observed from simulation results that the training 

and testing STOI scores vary among different 

optimizers and at different epochs. For Adam, the 

training STOI score reaches a maximum value of 

0.72353 at 100 epochs. However, the testing STOI 

score is the highest at 0.711516 at 100 epochs. There is 

no noticeable gap between the training and testing 

STOI scores which avoid overfitting and improving 

generalization ability. For Adagrad, the training STOI 

score increases gradually from 0.313359 to 0.392552 

on increasing epochs up to 100 and then decreases to 

0.322799 at 150 epochs. The testing STOI score is 

almost comparable with the training STOI score at 

epoch 100 which is 0.386919. 

However, it decreases to 0.322008 at epoch 150. For 

the optimizer SGD, the training and testing STOI 

scores are close to each other, with the training STOI 

score being slightly higher than the testing STOI score. 

The training STOI score increases from 0.33448 at 

epoch 50 to 0.495665at epoch 100 then shows a slight 

decrease at 150 epoch with 0.481966 score which is 

almost comparable with the score obtained at epoch 

100. Further, the testing STOI scores depict the same 

trend as shown by training data. It increases from 

0.33104at epoch 50 to 0.488662 at epoch 100. Then at 

epoch 150 it obtains a slightly lower score of 0.475163, 

which is almost equal to the score attained at epoch 

100. This shows that model is good and working well 

for SGD optimizer but overall, Adam optimizers 

supersedes the other two optimizers. Besides, it is 

evident from Fig. 4 that Adagrad and SGD optimizers 

have better performance in terms of generalization 

ability than Adam optimizer. 

Further, Tab. 1 presents a comparison of the pro-

posed model with other state-of-the-art models. 

 

 

 

  

(a) (b) 

Fig. 4. Simulation results with three optimizers for evaluation metric: 

(a) PESQ, (b) STOI (AM, AD, SG stand for Adam, Adagrad and Stochastic Gradient Descent respectively). 
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Table 1. Comparison of proposed model  

with state-of-the-art models 
 

Model PESQ STOI 

Noisy [16] 1.97 0.916 

Wiener [13] 2.22 0.914 

Wave-U-Net [20] 2.40 - 

Attention-wave-U-Net [28] 2.62 - 

Proposed model 2.68 0.71 

 

This shows that the proposed model renders an 

increased value of PESQ which shows better 

performance of the model, whereas STOI shows 

a decrement in the value. At last, it can be concluded 

that the best training and testing performance was 

achieved by Adam optimizer at 150 epochs with Huber 

Loss considered as objective function. Overall, using 

spectral gating along with U-Net model speech 

enhancement performance has been improved. 

 

5 Conclusion and future scope 

In this work, spectral gating with U-Net for speech 

enhancement is proposed for noisy signals. Based on 

simulation results Huber Loss shows optimal 

performance as an objective function with Adam 

optimizer. Furthermore, comparing evaluation metrics, 

best training and testing performance was achieved by 

Adam optimizer at 100 epochs The best testing 

performance was achieved by the Adam optimizer at 

100 epochs with a PESQ of 2.678575 and a STOI of 

0.711516 which shows a room for improving STOI. 

Simulation results on STOI scores emphasize that the 

SGD optimizer has shown better generalization ability 

compared to the other two optimizers. However, it 

should be noted that the best training performance does 

not always translate to the best testing performance, 

which highlights the importance of considering both 

training and testing scores when evaluating the 

performance of a model. Additionally, optimizing 

DNN by changing the number of layers and utilizing 

various optimizers might open up a wide range of new 

research opportunities for enhancing precision, speed, 

and computational costs in speech enhancement 

systems based on real-time application. 
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