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Precision of sinewave amplitude estimation  

in the presence of additive noise and quantization error 
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This research paper delves into a comprehensive investigation concerning the impact of additive noise and quantization error 

on the precision of amplitude, offset, and phase estimates of a sine wave fitted to a set of data points acquired by a waveform 

digitizer. Simulation results are used to validate the expressions presented. 
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1 Introduction 

The procedure of fitting data points to a known 

function finds widespread application across diverse 

engineering fields. One notable context is dealing with 

sinusoidal signals, where the objective is to accurately 

fit the data points to a sine wave with unknown 

parameters, namely, amplitude, offset, initial phase, and 

frequency. This fitting process is particularly useful in 

testing Analog-to-Digital Converters (ADCs) [1], even 

when there is frequency error in the stimulus signal [5], 

voltage noise [6] or jitter [7]. By fitting the data to a sine 

wave, engineers can gain valuable insights into the 

performance and characteristics of these converters. 

This paper is an extended version of [8]. 

To achieve the best fitting results, a least squares 

approach is commonly employed [9], which minimizes 

the sum of squared residuals between the observed data 

points and the values predicted by the sine wave model. 

When the data is affected by additive white Gaussian 

noise, this fitting method delivers excellent outcomes. In 

fact, it is proven to be the best linear unbiased estimator 

of the sine wave coefficients according to the Gauss-

Markov Theorem, provided that certain conditions are 

met. These conditions require that the errors affecting 

the data have zero expectation (ie, they are unbiased), 

are uncorrelated (though not necessarily independent), 

and have equal variances (though not necessarily 

identically distributed). There are, however, other non-

idealities like phase noise and jitter [11] or power supply 

noise [12] that affect the estimation results. The effect of 

these is not the subject of this paper. 

However, when dealing with digital data, such as that 

obtained from quantization by an analog-to-digital 

converter, new challenges arise. The data points to be 

fitted to the sine wave are affected by quantization error 

[13], which can visibly impact the performance of the 

fitting procedure. Quantization noise can introduce bias 

and alter the precision of the parameter estimates, as the 

errors are no longer uncorrelated due to the quantization 

process. 

In this paper, the focus is on analyzing the specific 

effects of three critical factors: the number of samples 

(N), the quantization step (Q) and the standard deviation 

of the additive noise (σn). The goal is to evaluate the 

standard deviation of the estimates of amplitude, offset, 

and phase at the origin of time (initial phase) and 

determine the precision of the sine wave fitting results. 

Understanding the precision of the parameter estimates 

is vital for assessing the reliability and accuracy of the 

fitting process. 

Furthermore, this paper presents an expression that 

helps determine the minimum number of samples 

required to achieve a desired precision for the sine wave 

parameters. This objective is essential for optimizing 

data acquisition strategies and minimizing data 

collection time while maintaining acceptable accuracy 

levels. 

By thoroughly investigating the impact of sample 

size and noise standard deviation on parameter 

estimates, the paper aims to provide valuable insights for 

practitioners in the field. Understanding these effects 

allows engineers and researchers to make informed 

decisions regarding data collection, signal processing, 

mailto:falegria@lx.it.pt


Journal of Electrical Engineering, Vol. 74, No. 5, 2023                                                           375 

 

 

and model fitting in various applications involving 

sinusoidal signals and digital data. Ultimately, the 

research contributes to enhancing the robustness and 

accuracy of parameter estimation techniques in the 

presence of quantization noise and limited data samples. 

 

2 Sine wave fitting 

Consider a sequence of N data points y1, y2, …, yN to 

which we want to fit a sine wave given by 

( )cos iC A t+  +  , where  is the phase at the time 

origin,  is the angular frequency (2f), A is the 

sinewave amplitude and C is the sinewave average 

value. The model is 

( )cos i

i i

C A t
y round Q n

Q

+  + 
= + 

 

 
, (1) 

where n is the additive white Gaussian noise with zero 

mean and Q the quantization step. In order to have 

a linear system, the cosine function is split and the 

following model is obtained: 

( ) ( )1 2cos sini i

i i

C A t A t
y round Q n

Q

+  + 
= + 

 

 
. (2) 

Parameters A1 and A2 are related with the sine wave 

amplitude (A) and initial phase (): 

( )

( )
1

2

cos

sin

A A

A A

=

=




  (3) 

The estimates of the sine wave are obtained, in 

a matrix form, with [10] 

[
𝐴1
𝐴2
𝐶
] = (𝑫𝑇𝑫)−1𝐷𝑇 [

𝑦1
𝑦2
. . .
𝑦𝑁

].  (4) 

Matrix D is constructed with three columns and N rows: 

𝑫 = [

𝑐𝑜𝑠(𝜔𝑡1) 𝑠𝑖𝑛(𝜔𝑡1) 1

𝑐𝑜𝑠(𝜔𝑡2) 𝑠𝑖𝑛(𝜔𝑡2) 1
. . . . . . . . .

𝑐𝑜𝑠(𝜔𝑡𝑁) 𝑠𝑖𝑛(𝜔𝑡𝑁) 1

].  (5) 

Introducing (5) into (4) gives 

[
𝐴1
𝐴2
𝐶
] = [

𝑊 𝑆 𝑂
𝑆 𝑅 𝑃
𝑂 𝑃 𝑁

]

−1

[
𝑈
𝑉
𝑌
],  (6) 

where 
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 (7) 

Inverting the matrix in (6) leads to 

2

2

21

2 2 2 2

 − − −
 

− − − 
    − − −     

=   − + − + −
     

NR P OP NS PS OR

OP NS NW O OS PW
A U

PS OR OS PW WR S
A V

NWR P W OPS NS OPS O R
YC

. (8) 

Carrying out the multiplication leads to 

2

2

21

2 2 2 2

 − + − + −
 

− + − + − 
   − + − + −   

=  − + − + −
  

NRU P U OPV NSV PSY ORY

OPU NSU NWV O V OSY PWY
A

PSU ORU OSV PWV WRY S Y
A

NWR P W OPS NS OPS O R
C

 . (9) 

We thus see how the estimative of the three sinewave 

parameters is obtained from the summations in (7). 

 

3 Precision of the estimates without quantization 

Considering an additive noise with a standard 

deviation of n, we can derive, from (9), the standard 

deviation of the estimate of the sine wave parameters in 

least significant bit units (LSB): 

( )
1

2

2 2 2 2 2 2 2

2

2
2 2 2

2 2 2 2 2 2 2

2

2 2 2

2 2 2 2 2 2 2

2

2 2 2
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 (10) 

Considering (7) we have 

( ) ( )

( ) ( )

2 2 2 2 2
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2 2 2 2 2

sin

2 2 2
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= = =

= = =

= =
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and 

( )
1

2

2
2 2

2
2 2 2

2
2 2

2 2 2

2
2 2

2 2 2

− + − + −
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− + − + −

− + − + −
=
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.

 (12) 

Considering the sampling instants equal to i/fs, where 

i is the sample index and fs is the sampling frequency, we 

can write  

( )2 2cos cos 2i

i i s

f
t i

f

 
=  

 
   .  (13) 

Considering the acquisition during one period of the 

sine wave, we have fs=Nf and thus 

( )2 2cos cos 2i

i i

i
t

N

 
=  

 
   .  (14) 

As the number of samples tends to  the summations 

can be approximated by an integral. 

( )

2 2

2

1
cos 2 cos 2

1
cos

2 2

i i

N

i i
N

N N N

N
N x dx

→ −

    
=    

    

 
⎯⎯⎯→ = 

 

 






 



.  (15) 

Considering (7) and applying the same reasoning we 

have then 

0   0   W       0
2 2

= = = = =
N N

O P R S .  (16) 

Then, introducing into (12) , we obtain 

1 2
   ,      ,   

2 2

n n n

A A C
N N N

= = =
  

   .  (17) 

To determine the variance of A and  we can write 

(3) as 

2 2

1 2

2
1

1

2

1

1

atan    ,   0

atan +    ,   0

A A A

A
A

A

A
A

A





= +

  −
  

  
= 

 −
 

 

.  (18) 

The variance of the estimated amplitude A will 

depend on the variances of A1 and A2. To determine this 

variance from (18) we can use the rule about the variance 

of a function of a random variable ([14], p. 113). It leads 

to: 

2 2
1 2

2 2
1 2 2 2

1 2

2
2 2

1 22 2

2 2

1 2

+

+

+ =

 +
 = 
 +
 

A A

A A A

A A

d A A

A A


  .  (19) 

Calculating the derivative leads to 

2 2
1 2

2 2
1 2

2

2 21

2 +

+

 
 = 
  
 

A A A

A A

 


.  (20) 

After some simplification it leads to 

( )
( )2 2

1 2

2 2
1 2

2 2 21

4
+

=  +A A A

A A

  


.  (21) 

Again, using the same rule, we get 

1

2 2=A A  .  (22) 

Introducing (17) leads finally to 

2

n

A
N


 = .  (23) 

For the variance of the estimated phase we can use 

the same rule of the variance of a function of a random 

variable to write, from (18), 

2

1

2
2

1
1

2

2

12 2

2

1

atan

−

−

−
=

   −
    
   

=  −
 
 
 

A

A

A

A

A

A

A
d

A

A
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  .  (24) 

Calculating the derivative leads to 

2

1

2

1

2

2

2
2

1

−

=
  
 +  

    

A

A

A

A











.  (25) 

On the other hand, from [15], we have 

2

2 1 2

1 11

2

2 2 2

4 2

1
− = +

A

A A A

A AA


  

 
.  (26) 

Since the variance of both A1 and A2 is the same, we 

can write 

1 2

2 1

11

2 2

2 2

4−

+
=

A A

A A

AA

 
 


.  (27) 

Introducing into (25) leads to
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1=
A

A







.         (28) 

Using (17) and considering that the estimate of the 

amplitude is not biased (A = A), we have 

2

n

N A



 =


.  (29) 

Summarizing, we have, from expressions (17), (23) 

and (29): 

   ,      ,   
2 2

n n n

A C
N N A N



  
  = = = .  (30) 

We see that the standard deviation of the estimates is 

proportional to the standard deviation of the amount of 

additive noise present and inversely proportional to the 

square root of the number of samples.  

 

4 Effect of quantization noise 

When the data is digitalized through the quantization 

process, a new source of error is introduced, known as 

quantization error. This error arises from the fact that the 

analog signal is represented by discrete digital values, 

leading to a loss of information. The quantization error 

affects the estimates of the sine wave parameters 

obtained through the fitting method. 

To understand and model the impact of quantization 

error on the parameter estimates, we treat it as a random 

variable with a null mean and a standard deviation of 

12Q  [11].  

This assumption is a good approximation under 

certain conditions, particularly when there is also 

additive white Gaussian noise present in the data. The 

presence of this type of noise ensures that the 

digitalization errors introduced by quantization are 

uncorrelated. 

The model, using this approximation, is  

( ) ( )1 2cos sini i i i iy C A t A t n q = +  + + + ,  (31) 

where q is the quantization error. We can treat this as if 

the variance of the noise is now the sum of the variances 

of both additive noise and quantization noise, and so 2

n  

becomes 2 2 12n Q + .  

Using this in (30) leads to 

2 2 2
2 2 2

12 12 12
      

2 2

+ + +

= = =


n n n

A C

Q Q Q

N N N A


  

   . (32) 

Note that, as expected, the precision of the estimates 

increases (standard deviation decreases) with increasing 

number of samples. 

 

Fig. 1. Standard deviation of the estimated amplitude of 

a fitted sine wave as a function of additive noise standard 

deviation  

Both quantities are normalized to the quantization 

step. The vertical bars correspond to a confidence 

interval of 99%. The dash-dot line represents the value 

given by (32), the dotted and solid lines represents the 

asymptotic approximation for low and high values, 

respectively, of additive noise standard deviation. The 

simulations were carried out with 21 points extracted 

from one period of a sine wave with A = 100 LSB, C = 0 

and =/4. 

 

5 Validation 

To validate the expressions derived, we performed 

some simulations of (1) with different values of additive 

noise standard deviation. The standard deviation of the 

sine wave parameters estimates was determined by 

repeating the fitting 1000 times with a random varying 

phase at the origin of time corresponding to 

asynchronous sample acquisition. 

In Fig. 1, the relationship between the standard 

deviation of the estimated amplitude and the additive 

noise standard deviation is depicted. Both variables are 

normalized to the ideal quantization step Q, providing 

a convenient comparison and scaling of the results. 

The simulated standard deviation of the estimated 

amplitude is represented by vertical bars, which 

correspond to a confidence interval of 99%. These bars 

indicate the range within which the estimated amplitude 

is likely to fall based on the simulation results. 

The dash-dot line, represented by equation (32), 

shows the theoretical standard deviation of the estimated 

amplitude. This value is calculated based on the model 

that takes into account the additive noise and 

quantization error present. 

Interestingly, in the graph, it can be observed that the 

simulated standard deviation is consistently lower than 

the theoretical value given by equation (32). This 

discrepancy is due to various factors, including the 



378                                           Francisco André Corrêa Alegria: Precision of sinewave amplitude estimation … 

 

assumptions and approximations made in the theoretical 

model. Despite the theoretical prediction providing an 

overall understanding of the relationship between the 

variables, the simulation results reveal the practical 

limitations and uncertainties encountered in real data 

scenarios. 

Furthermore, the graph features two additional lines 

for asymptotic approximations. The dotted line 

represents the asymptotic approximation for low values 

of the additive noise standard deviation. In this regime, 

the impact of the additive noise is relatively small 

compared to the quantization error, leading to a specific 

behavior in the standard deviation of the estimated 

amplitude. 

On the other hand, the solid line represents the 

asymptotic approximation for high values of the additive 

noise standard deviation. In this regime, the additive 

noise dominates the overall noise characteristics, 

significantly influencing the standard deviation of the 

amplitude estimates. 

By providing both asymptotic approximations, the 

graph captures the behavior of the standard deviation of 

the estimated amplitude in different noise regimes, 

allowing for a comprehensive understanding of the 

parameter estimation performance under various 

conditions. 

Overall, Fig. 1 provides valuable insights into the 

relationship between the additive noise standard 

deviation, quantization error, and the standard deviation 

of the estimated amplitude. The comparison between 

theoretical predictions and simulation results highlights 

the practical challenges and limitations that engineers 

and researchers may encounter when estimating sine 

wave parameters in the presence of quantization and 

additive noise in real-world digital data scenarios. 

 

 

Fig. 2. Standard deviation of the estimated offset of 

a fitted sine wave as a function of additive noise standard 

deviation  

Both quantities are normalized to the quantization 

step. The vertical bars correspond to a confidence 

interval of 99%. The dash-dot line represents the value 

given by (32), the dotted and solid lines represents the 

asymptotic approximation for low and high values, 

respectively, of additive noise standard deviation. The 

simulations were carried out with 21 points extracted 

from one period of a sine wave with A = 100 LSB, C = 0 

and =/4. 

In Fig. 2 and 3, the simulated standard deviations of 

the phase at the origin of time and the offset, 

respectively, are presented. These graphs provide 

valuable insights into the precision and reliability of 

estimating these parameters in the presence of 

quantization and additive noise in digital data scenarios. 

Fig. 2 shows the simulated standard deviation of the 

phase at the origin of time as a function of the additive 

noise standard deviation, normalized to the ideal 

quantization step Q. The vertical bars in the graph 

represent a confidence interval of 99%, indicating the 

range within which the estimated phase is likely to fall 

based on the simulation results. 

Similarly, Fig. 3 illustrates the simulated standard 

deviation of the offset as a function of the additive noise 

standard deviation, also normalized to the ideal 

quantization step Q. The vertical bars in this graph 

represent the 99% confidence interval for the estimated 

offset. 

The simulated standard deviations in Fig. 2 and 3 are 

essential in understanding the precision of estimating the 

phase and offset parameters in the presence of noise. As 

with the simulated standard deviation of the amplitude 

(shown in Fig. 1), the simulated standard deviations of 

the phase and offset provide practical insights that might 

differ from the theoretical predictions due to real-world 

complexities and uncertainties in the data. 

Analyzing the trends and behaviors depicted in these 

graphs allows researchers and engineers to make 

informed decisions when designing and optimizing data 

acquisition systems and signal processing algorithms. It 

helps determine the necessary sample size and the 

acceptable levels of noise in practical applications to 

achieve the desired precision in estimating the phase and 

offset of the sine wave. 

By presenting the simulated standard deviations 

alongside the theoretical predictions, Fig. 2 and 3 

provide a comprehensive view of the estimation 

performance under different noise regimes. This 

comparison allows for a better understanding of the 

trade-offs between noise levels, quantization errors, and 

the achievable precision of phase and offset estimation. 
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In summary, Fig. 2 and 3 play a crucial role in 

evaluating and optimizing the performance of the sine 

wave fitting procedure in the presence of both 

quantization and additive noise. These graphs provide 

practical insights and empirical data that help bridge the 

gap between theoretical models and real-world data 

scenarios, enabling researchers and practitioners to 

make more accurate and informed decisions in various 

engineering applications. 

 

 

Fig. 3. Standard deviation of the estimated phase at the 

origin of time of a fitted sine wave as a function of 

additive noise standard deviation which is normalized to 

the quantization step  

The vertical bars correspond to a confidence interval 

of 99%. The dash-dot line represents the value given by 

(32), the dotted and solid lines represents the asymptotic 

approximation for low and high values, respectively, of 

additive noise standard deviation. The simulations were 

carried out with 21 points extracted from one period of 

a sine wave with A = 100 LSB, C = 0 and =/4.  

These simulations validate expressions (32) derived 

here. 

 

6 Minimum number of samples 

Equations (32) provide valuable insights into 

determining the minimum number of samples required 

to ensure a certain confidence interval in the estimates of 

the sine wave parameters. These confidence intervals are 

obtained by multiplying the standard deviation of the 

estimators by a coverage factor (k), which depends on 

the type of distribution of the estimators [6]. 

For example, in the case of a normal distribution, a 

coverage factor of 3 corresponds to a 99% confidence 

level. This means that there is a 99% chance that the 

actual value of the parameter falls within the estimated 

interval. 

To calculate the minimum number of samples needed 

for a desired confidence interval, we use equation (33), 

which is derived based on the standard deviation of the 

estimators: 

2
2

2 2 2

2 1 2
max , ,

12

  
 +         

n

A C

Q
N k

U U A U

 , (33) 

where UA, UC and U are the half-width of the 

uncertainty intervals desired for the estimation of the 

amplitude, offset and phase at the origin of time of the 

sine wave. 

The equation takes into account the desired precision 

(half-width of the uncertainty intervals) for each 

parameter estimation and relates it to the standard 

deviation of the noise and angular frequency (ω) of the 

sine wave. 

By using equation (33), engineers and researchers 

can determine the minimum number of samples required 

to achieve a specific level of precision in estimating the 

parameters of the sine wave. This information is 

valuable in practical applications where data collection 

and processing resources are limited, as it allows for the 

optimization of the data acquisition process and the 

estimation algorithm to meet specific performance 

requirements. 

In summary, equation (33) provides a practical tool 

for determining the minimum number of samples needed 

to achieve a desired confidence interval in the estimates 

of the amplitude, offset, and phase of a sine wave. This 

facilitates the design and implementation of accurate and 

reliable parameter estimation algorithms in various 

engineering applications, even in the presence of noise 

and quantization effects. 

 

7 Conclusions 

In this research paper, the focus was to investigate the 

influence of additive noise on digital data and its impact 

on the accuracy and precision of estimating the 

parameters of a sine wave. We employed a 3-parameter 

fitting method, as described in reference [10], to estimate 

the amplitude, offset, and phase at the origin of time for 

the sine wave model: 

 

2 2 2
2 2 2

12 12 12
      

2 2

+ + +

= = =


n n n

A C

Q Q Q

N N N A


  

    

 

After conducting thorough analysis and simulations, 

we obtained valuable results in the form of expressions 

(32) that provide insight into the precision of the 

parameter estimates. These expressions can be utilized 

to compute the standard deviation of the estimated 

amplitude, offset, and phase of the sine wave in the 
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presence of both quantization and additive noise in 

digital data scenarios. 

Expressions (32) provide insight into how the 

standard deviation of the estimated amplitude, offset, 

and phase scales with the additive noise standard 

deviation, normalized to the ideal quantization step Q. 

The simulation results and theoretical predictions 

allowed us to gain a deeper understanding of the 

behavior of the estimation precision across different 

noise regimes. 

Also, an expression for the minimum number of 

samples required to achieve a desired uncertainty on the 

sine wave parameters was presented: 

 

2
2

2 2 2

2 1 2
max , ,

12

  
 +         

n

A C

Q
N k

U U A U

 . 

 

These results are particularly valuable for 

engineering applications where precise parameter 

estimation is essential. By utilizing expressions (32), 

researchers and engineers can quantitatively evaluate the 

precision of their sine wave parameter estimates and 

make informed decisions regarding data acquisition 

strategies, noise reduction techniques, and optimization 

of the parameter estimation algorithm. There are, of 

course, other methods that are also affected by the 

presence of additive noise like the histogram test of 

ADCs [17]18[18] or even methods that are used to 

estimate the amount of noise itself [19], or other 

quantities not related to ADCs like geophysical 

exploration [20], liquid fluid velocity measurement [21]. 

In conclusion, this paper contributes to the field of 

parameter estimation for sine waves in digital data 

scenarios, by providing expressions (32) that offer 

insights into the precision of the estimated amplitude, 

offset, and phase. These results enhance our 

understanding of the impact of noise on parameter 

estimation and pave the way for further advancements in 

signal processing and data analysis in engineering 

applications. 
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