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Decentralized control of nonlinear complex systems 

 
Vojtech Veselý, Jana Paulusová, Ladislav Körösi 

 
In the paper, a novel approach to decentralized controller design for nonlinear systems is introduced. The proposed method is 

based on the relationship between the stability of complex nonlinear systems and the stability of their subsystems. The design 

procedure of the decentralized controller consists of three steps. In the first step, the stability of the complex nonlinear system 

is calculated. In the second step, stability conditions at the subsystem level are obtained such that guarantee the stability of the 

complex nonlinear system. Finally, in the third step, a controller design method is used to ensure that the subsystem stability 

conditions obtained in the second step are met. As an example, to better understanding the proposed method two simple 

nonlinear models are used to demonstrate the effectiveness of the proposed method. 
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1 Introduction 

Real systems are becoming large and more complex 

because their must meet the increasing quantity and 

quality demands. Todays are experiencing significant 

transformations due to the integration of different energy 

sources and advancements in different digital 

technologies. These changes introduce new challenges 

to global system, especially in maintaining quality, 

stability and reliability in such environments. 

Centralized control frame works often cannot adapt 

efficiently to guarantee in real situation all above 

demands. Therefore, decentralized control is considered 

as an effective method to control of large-scale real 

processes [1]. In recent years fruitful results in the field 

of decentralized control of nonlinear systems has been 

obtained in [2-4] and [7]. In the paper [6] each subsystem 

is described by a nonlinear state model, such that 

interaction between different subsystems is linear. 

Decentralized feedback control is constructed such that 

stabilize the complex system for all initial conditions. In 

the paper [5] robust control law is design for systems 

processing similar subsystems. It is shown that design 

process for decentralized controller may be simplified 

using similar subsystems structure. Above works are 

based on the assumption that full state information is 

available. 

In the time domain, three groups of decentralized 

control methods have been developed: stability analysis 

and decentralized control design using the aggregation 

matrix approach [10], the Vector Lyapunov function 

approach, [9], and significant progress has been made in 

the control of LSS through the use of LMI-BMI, as seen 

in the review article [11]. Unfortunately, when the above 

approaches are used for stability analysis and 

decentralized controller design, a complete complex 

model of LSS needs to be applied. 

More simple decentralized controller design proce-

dures for linear systems with small conservatism are 

obtained in [8, 12, 13]. 

In this article, we pursue the idea given in above 

papers for linear systems and we have proposed an 

original procedure for designing decentralized con-

trollers for nonlinear complex systems. The idea of the 

decentralized controller design methodology is based on 

the relationship between the stability of subsystems and 

the stability of the complex system. The method 

proposed in this paper for designing a decentralized 

controller consists of three steps, as follows. 

In the first step, the stability of the nonlinear and non-

controlled complex plant model (when u1, u2 are 

constants) is calculated. In the second step, subsystems 

without interaction and their such stability boundary are 

calculated, that ensures the stability of the complex 

system, is obtained. Based on the results obtained in the 

second step, an appropriate method for decentralized 

controller design will be selected to design a decentra-

lized controller that adheres to the calculated sub-

systems' stability boundaries. 

In the proposed design methods, the notion of strong 

or weak interaction between subsystems not play any 

role. The proposed method based on the relations 

between subsystem stability and stability of complex 

system. The proposed decreases the conservatives of the 

decentralized controller design procedure. In this paper, 

the decentralized procedure is applied only on the 

subsystem level. 
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2 Preliminaries, system model and stability 

We are given the nonlinear second-order system in 

the following form: 

𝐱̇ = [𝐀 + 𝐃(𝐱)]𝐱 + 𝐁𝐮,  𝐲 = 𝐂𝐱, (1) 

where 𝐃(𝐱) is nonlinear function matrix, should be 

choose by controller designer on the base of the real 

plant. Suppose that ‖𝐃(𝐱)‖ approaches to zero as x goes 

to zero. Here, 𝐱 ∈ Rn, 𝐮 ∈ Rm, 𝐲 ∈ Rl are the states, 

inputs, and outputs of the system, respectively. Let us 

consider a candidate Lyapunov function for system (1) 

as follows: 

𝐕(𝐱) = 𝐱𝑇𝐏𝐱,  𝐏 > 0. (2) 

Assume, that system matrix 𝐀 is asymptotically stable. 

The first time derivative of (2) with respect to linear part 

of (1) gives the Lyapunov equation as follows: 

𝐕̇(𝐱) = 𝐱𝑇(𝐀𝑇𝐏 + 𝐏𝐀)𝐱 = −𝐱𝑇𝐐𝐱,  𝐐 > 0. (3) 

To determine the complex stability conditions of the 

matrix 𝐀, let's modify the matrix 𝐀 (3) as follows: 

𝐕̇ = 𝐱𝑇((𝐀 + 𝛼𝐈)𝑇𝐏 + 𝐏(𝐀 + 𝛼𝐈))𝐱 − 𝐱𝑇𝐐𝐱 = 0 (4) 

Solve the Lyapunov matrix (4) with respect to matrix P 

and α. Note that if the obtained result for α <  0, the 

system (1) is unstable. Denote 𝐀𝐜 = 𝐀 + α𝐈. The first 

derivative of the candidate Lyapunov function with 

respect to (1) and 𝐀𝐜 gives: 

𝐕𝐜̇ = 𝐱𝑇(𝐀𝐜
𝑇𝐏 + 𝐏𝐀𝐜)𝐱 + 𝐱𝑇(𝐃𝑇(𝐱)𝐏 + 𝐏𝐃(𝐱))𝐱 (5) 

For (5) we have: for any γ > 0 there exists r > 0 such 

that ‖𝐃(𝐱)‖ < γ for all ‖𝐱 ‖ < 𝑟: 

𝐕𝐜̇ ≤ [−𝜆𝑚𝑖𝑛(𝐐) +  2𝛾‖𝐏‖]‖𝐱‖2 ‖𝐱‖ < 𝑟 (6) 

Choose γ <
λmin(𝐐)

2‖𝐏‖
. From equation (6) it is clear that 

there exists such a value of 𝐱 ∈ [0, γ] that 𝐕̇𝐜 < 0, 

meaning that nonlinear system (1) is asymptotically 

stable. Let matrix 𝐀𝐜 be divided into the following 

matrices: 

𝐀𝐂𝐱 = [
𝐴11(𝑥1) 𝐴12(𝐱)

𝐴21(𝐱) 𝐴22(𝑥2)
] (7) 

From the above Eqn. (7), one can see that we have 

obtained two linear subsystems with interactions A12(𝐱) 

and A21(𝐱). Summarizing the above results, we obtain 

the following Lemma: 

Lemma 1: Assume that matrix 𝐀𝐜 is asymptotically 

stable. If the subsystems parameters without 

decentralized controllers guarantee the stability of 

complex system. For this case the maximal subsystem 

eigenvalues are given by α for which the stability of the 

complex system is guaranteed. To guarantee the stability 

of a complex system, the subsystem decentralized 

controllers need to be designed such that for the maximal 

value of subsystem closed-loop eigenvalues β, the 

following inequality holds: 

β ≤ α 

 

3 Examples 

In this study, we present the time control of two 

MIMO systems. Since these systems are abstract and not 

tied to real-world physical quantities, the model para-

meters and time axis values are dimensionless and have 

no associated SI units. 

 

3.1 First example 

The problem is to design two PI decentralized 

controllers that ensure the stability of two subsystems 

and the stability of complex system. Let us assume the 

structure and parameters of the complex linear part of 

system are given as follows: 

System and input matrix 

𝐀 = [
−0.55 0.1
0.12 −0.3

] , 𝐁 = [
1 0
0 0.7

] 

Output matrix 

𝐂 = [
1 0
0 1

] 

Matrix 

𝐐 = [
1 0.1

0.1 1
] 

Note, that for simulation of the closed-loop system 

the nonlinear part of system 𝐃(𝐱) should be taken from 

the real plant. 

For the next, two scenarios will be shown. In the first 

scenario we assume that for matrix 𝐀 the designed PI 

controller will move the maximal eigenvalue of closed-

loop system to zero, that is to the boundary of stability. 

In this case, we need to choose the corresponding value 

of α such that the linear part of the system with α will be 

on the stability boundary. In the second scenario, we 

assume that the designed PI controller will move the 

maximal eigenvalue of matrix 𝐀 to the left by a value of 

α =  −0.15. 

 

Case a of the first scenario 

Calculation gives: Eigenvalues of matrix 𝐀 =
{−0.5912, −0.2588}. Maximal eigenvalue we need to 

move to the stability boundary. Results for α = 0.257 

and matrix 𝐏 = [
44.845 105.322

105.322 256.6692
]. For the above 

case, when the system is near the stability boundary, the 

obtained coefficient γa = 0.0024. The value of γ 

characterizes the region, where the Lyapunov function 
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exists or global system is asymptotically stable. The real 

value of state boundary depends on the structure and 

parameters of the nonlinear function 𝐃(𝐱) < 𝛾. 

Note that obtained α is equal to the maximal eigen-

value of the stable matrix 𝐀. The obtained α =  0.257 

indicates that the complex system in the region defined 

by γ is stable. For the stable complex system, one could 

choose the subsystems without interaction for which the 

decentralized PI controller need to be designed such that 

the decentralized controller would move closed-loop 

eigenvalues to the left by α. 

 

Case b of the first scenario 

Let us assume that the designed PI controller will 

move the eigenvalues of the system's linear part to the 

left by α = −0.15. The results of calculation system 

parameters are: 

Lyapunov matrix for the closed-loop system is 

𝐏 = [
0.7652 0.2764
0.2764 1.1781

] 

The stability boundary with respect to the complex 

system state variables with two PI decentralized 

controllers is given by coefficient γb = 0.537. 

Subsystem structure and parameters for decentralized PI 

controller design are: 

𝑥̇1 = −0.55𝑥1 + 𝑏1𝑢1,  𝑦1 = 𝑥1 

𝑥̇2 = −0.30𝑥2 + 𝑏2𝑢2,  𝑦2 = 𝑥2 

For PI decentralized controller denote [𝑥𝑖 𝑧𝑖] = 𝐱in
T ,

𝑦𝑖 = 𝑥𝑖 , 𝑖 = 1, 2. 

𝐱̇𝐢𝐧 = 𝐀𝐢𝐱𝐢𝐧 + 𝐁𝐢𝐮𝐢,  𝐲𝐢𝐧 = 𝐂𝐢𝐱𝐢𝐧 

where zi̇ = yi 

𝐀𝟏 = [
−0.55 0

1 0
] , 𝐁𝟏 = [

1
0

] , 𝐂𝟏 = [
1 0
0 1

] 

𝐀𝟐 = [
−0.3 0

1 0
] , 𝐁𝟐 = [

0.7
0

] , 𝐂𝟐 = [
1 0
0 1

] 

Due to the simple matrices, the characteristic equations 

for the linear part of the two subsystems with α =
 −0.15 and PI controllers are: 

For the first and second subsystems: 

𝑠2 + 𝑠(0.7 + 𝑘𝑝1) + 𝑘𝑖1 = 0, 

𝑠2 + 𝑠(0.45 + 𝑘𝑝2) + 𝑘𝑖2 = 0 

From above two characteristic equations one could 

obtain the set of PI controller gains. We have taken the 

following gains and roots of characteristic equations: 

 

 

 

1st subsystem  

𝑘𝑝1 = 4.3, 𝑘𝑖1 = 4, roots1 = {−1, −4} 

2nd subsystem 

𝑘𝑝2 = 5.0, 𝑘𝑖2 = 4, roots2 = {−0.82, −4.88} 

If the above two subsystems' characteristic equations are 

asymptotically stable, then the closed-loop complex 

system is asymptotically stable in the region  

‖𝐱 ‖ ∈ 〈0, 𝛾𝑐〉. Summarizing above results in the next 

Table: 

 

Table 1. Results for all cases 

Cases 𝜶 𝜸 

Case a 0.257 0.0024 

Case b –0.15 0.537 

Case c –1 1.045 

 

Note that case c is when the complex system is 

controlled by two PI controllers. 

The above results clearly indicate that increasing the 

dynamic quality of subsystems with decentralized 

controllers also increases the stability region of the 

complex nonlinear system 𝛾𝑎 < 𝛾𝑏 < 𝛾𝑐. 

 

3.2 Second example 

The goal of this example is to show the step-by-step 

design of two decentralized P-controllers for a second-

order system and for the case of constraints on the two 

output variables. 

The plant model is given as follows: 

𝐱̇ = 𝐀𝐱 + 𝐁𝐮,  𝑦1 = 𝑥1,  𝑦2 = 𝑥2 

Control algorithm which ensures the output constraints 

is given as follows 

𝑢1 = 𝐷1𝐾1𝑥1,  𝑢2 = 𝐷2𝐾2𝑥2,  𝐷𝑖 = 𝑑𝑖 − 𝑥𝑖, 𝑖 = 1,2 

where di define the maximal value of soft output 

constraints and xi is auxiliary variable which depends on 

the i-th output, see Fig. 1, and Ki is the controller gain. 

The control algorithm, after small manipulation is in the 

form 

𝐮 = [
𝑢1

𝑢2
] = {[

𝑑1 0
0 𝑑2

] − [
𝑥̅1 0
0 𝑥̅2

]} [
𝐾1 0
0 𝐾2

] 
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The control algorithm consists of two parts: linear 

and non-linear. Assume that the Lyapunov function for 

the global system is given as follows: 𝐕 = 𝐱T𝐏𝐱 and its 

time derivative is: 

𝐕̇ = 𝐱𝑇[(𝐀𝐋
𝑇𝐏 + 𝐏𝐀𝐋) + (𝐀𝐍

𝑇 𝐏 + 𝐏𝐀𝐍)]𝐱 < 0 

Assume that linear part of the system matrix 

𝐀𝐋 = 𝐀 + 𝐁 [
𝑑1𝐾1 0

0 𝑑2𝐾2
] 

is asymptotically stable, then it holds 

𝐱𝑇(𝐀𝐋
𝑇𝐏 + 𝐏𝐀𝐋)𝐱 = −𝐱𝑇𝐐𝐱, 𝐐 > 0 

For the time derivative of the Lyapunov function for 

complex system one obtains 

𝐕̇ = 𝐱𝑇𝐐𝐱 − 𝐱𝑇[(𝐁𝐍𝐊)𝑇𝐏 + 𝐏(𝐁𝐍𝐊)] ≤ 

−𝜆𝑚𝑖𝑛(𝐐) + 2‖𝐁𝐍𝐊‖‖𝐏‖‖𝐱‖2  

where 𝐍 = diag{𝑥1, 𝑥2},  𝐊 = diag{𝐾1, 𝐾2} 

 

Note that if 𝐱 approaches zero, then 𝑥1 and 𝑥2 go to 

zero. 

 

Lemma 2. There exists some 𝐱 ∈ (0, δ) for which  

 𝐕̇ < 0, meaning that V is the Lyapunov function of the 

complex non-linear system. Assume that δ = ‖𝐁𝐍𝐊‖, 

then for δ one obtains: 

δ =
α𝑚𝑖𝑛(𝐐)

2‖𝐏‖
 

For the system given below, the stability results of calcu-

lation are as follows: 

Linear part of the complex system. 

𝐱̇ = [
𝑎11 + 𝑏1𝑑1𝐾1 𝑎12

𝑎21 𝑎22 + 𝑏2𝑑2𝐾2
] 

where 

𝑎11 = −1, 𝑎12 = 0.6, 𝑎21 = 0.55, 𝑎22 = −0.8 

𝑑1 = 𝑑2 = 1, 𝐾1 = 𝐾2 = −20 

Matrix 

𝐐 = [
1 0.1

0.1 1
] 

The stability boundary of the complex system is 

given by the value of α =  20.3160. This means the 

maximal eigenvalues of the linear part of the system may 

move to the right by the value of α, and stability is still 

guaranteed. For the above stability boundary, the 

obtained δ =  33.1064 , which means the complex 

system is asymptotically stable for the state  
‖𝐱‖ ∈ ⟨0,33.1064⟩. Subsystems for decentralized 

controller design are: 

𝑥̇1 = −2𝑥1 + 𝑏1𝑢1, 𝑥̇2 = −1.8𝑥2 + 𝑏2𝑢2, 

and control algorithms are 

𝑢1 = (𝑑1 − 𝑥̅1)𝐾1𝑥1,    𝑢2 = (𝑑2 − 𝑥̅2)𝐾2𝑥2 

In this case, we want to design two decentralized P 

controllers, which will guarantee the stability of 

complex systems and the soft constraints of two output 

variables 𝑦1, 𝑦2. This results in constant deviations 

between the desired values 𝑤1, 𝑤2 and the system 

outputs. The designed P-decentralized controllers are 

𝐾1 = 𝐾2 = −20. The simulation was carried out with 

𝑏1 = 𝑏2 = 1. The nonlinear characteristics of 𝑥1 and 𝑥2 

as functions of 𝑥1 and 𝑥2 are shown in Fig. 1. Two 

outputs with soft constraints and their desired values are 

shown in Fig. 2. The simulation results indicate that the 

complex system is asymptotically stable. When the 

outputs are greater than 0.5 (this value can be changed), 

the open-loop gain 𝐷i = (𝑑i − 𝑥i) decreases, and in this 

way, the outputs cannot grow. The output constraints are 

soft. 

 

Fig. 1. Nonlinear part system for example 2 

 

 

Fig. 2. Two outputs with soft constraints and their 

desired values for example 2 
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4 Conclusion 

The proposed decentralized control method for 

nonlinear systems has many benefits. It introduces a new 

approach that improves stability and performance. By 

breaking down complex systems into controllable linear 

subsystems, it simplifies stability analysis and controller 

design. This method uses Lyapunov-based techniques to 

ensure the whole system remains stable, even when 

subsystems interact. The use of Proportional-Integral 

(PI) controllers fine-tunes subsystem dynamics, greatly 

enhancing quality and expanding the stability region. 

This allows the system to handle larger disturbances 

while maintaining optimal performance. Its scalability 

and adaptability make it suitable for various nonlinear 

systems, enabling independent subsystem tuning and 

easier implementation. Case studies show its practical 

use, with designed controllers effectively enhancing 

stability, proving its feasibility for real-world 

applications in robotics and industrial automation. 

Overall, this innovative approach offers a robust, 

effective, and flexible solution for advanced control 

systems. 
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