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Performance evaluation of symbol detection algorithms  

in massive MIMO communication systems 
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Massive MIMO (mMIMO) is the essential technique for attaining the exponential increase in the data rate needed for future 

communication systems. These advancements have been significantly supported by progress in VLSI technology, which 

enables the integration of an enormous number of antennas and the complex signal processing essential for massive MIMO 

systems on a single chip. This work conducts a comprehensive analysis of the intricacy of seven matrix decomposition 

techniques for symbol detection in future mMIMO communication systems: ADMM-based infinity norm (ADMIN), Neumann 

series (NS), Newton iteration (NI), Jacobi iteration (Ja), improved Gauss-Seidel (IGS), conjugate gradient (CG), and QR 

decomposition (QR), against linear and near-optimal minimum mean square error (MMSE). QR, GS, Ja, and CG belong to 

linear algebraic methods based on matrix decomposition. MMSE and ADMIN are nonlinear optimization methods; NS and NI 

are iterative methods. The analysis examines into the complexity of these detection algorithms, considering the symbol error 

rate, the convergence rate, the initial solution vector, and the correlation factor. Performance evaluations are conducted on 8 

and 16-user mMIMO systems with 64 and 128 base station antennas, modulation schemes (32-QAM and 64-QAM), iteration 

counts (𝑝 = 1, 2, 3, 4), correlation factors (α = 0.2, 0.4, and 0.6), and initial solution vectors (zero vector,  𝐷−1 and 𝑊2
−1 𝑦𝑀𝐹). 

The result clearly shows that if the initial solution and number of iterations are chosen properly, the IGS-based linear detector 

achieves near-optimal performance with a lower computational complexity of 𝑂(𝐾2) compared to the nonlinear MMSE-based 

detector with a computational complexity of 𝑂(𝐾3).  
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1 Introduction 

Next-generation wireless innovation, known as 

massive MIMO (mMIMO), enables the transmission of 

numerous data streams inside a single frequency band 

[1]. It improves spectrum efficiency, data rates, 

coverage, interference control, energy efficiency, 

diversity gain, spatial resolution, and scalability [2-3]. 

But it poses challenges to the receiver's ability to discern 

messages amid noise and interference [4]. The 

maximum-likelihood (ML)-based symbol detection 

method is optimal but becomes increasingly complex as 

the number of antennas increases [5]. Therefore, near-

perfect mMIMO detectors are used, which maintain a 

balance between algorithm complexities and hardware 

requirements [6]. The presence of numerous antennas 

and the utilization of high-order modulation techniques 

present challenges in the detection of mMIMO data at 

the receiver end [7-8]. Conventional non-linear data 

detectors, such as the sphere decoder (SD) and tabu 

search (TS), work well for small-scale MIMO but are too 

complicated for mMIMO detection [9]. As an 

alternative, linear data detection techniques such as 

minimum mean-square error (MMSE)-based equa-

lization or zero-forcing (ZF) are taken into consideration 

[10-11]. These algorithms provide a balance between 

complexity and performance, but they require high 

computational complexity because of matrix inversion 

operations [12-13]. The computational complexity of 

𝑂(𝐾3), for K number of users, is given by exact 

inversion-based methods, such as QR-Gram Schmidt, 

Gauss-Jordan, or Cholesky decomposition, which 

further necessitates a significant amount of processing 

power [14]. The mMIMO detector is a crucial 

component in wireless technologies like the Internet of 

Things (IoT), Vehicle to Everything (V2X), Wireless 

Sensor Network (WSN), and Machine to Machine 

(M2M), provided that they offer minimal complexity, 

latency, power, and space [15]. 

 

1.1 Notations used in this paper 

This study uses lower and capital-case boldface 

characters to indicate vectors and matrices, respectively. 

The notation 𝑨𝑖𝑗 is used to designate the 𝑖𝑡ℎ row and the 
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𝑗𝑡ℎ column of matrix 𝑨. Similarly, the 𝑘𝑡ℎ element of 

vector 𝒂 is expressed as 𝒂𝑘 . Additionally, the conjugate 

transpose and inverse are represented by the operations 

(. )𝐻 and (. )−1, respectively. The sign |. | denotes the 

absolute value operator. 𝐸{. } is a mathematical construct 

used to calculate expectations. The abbreviation 𝐼𝑚 is 

used to represent the 𝑀𝑥𝑀 identity matrix. Further, 𝑝𝑡ℎ 

iteration of the detection method is represented by (. )𝑝. 

 

2 System framework  

Let us examine a mMIMO system with K users and 

N base station (BS) antennas, where 𝑁 is much greater 

than 𝐾 (e.g.,  𝑁 = 64 𝑎𝑛𝑑  𝐾 = 8), as shown in Fig. 1. 

Many users transmit information to the base station 

using spatial multiplexing at the same time. Every user 

sends a symbol 𝑠𝑖 selected from a modulation con-

stellation set. Furthermore, it is presumed that the 

temporal synchronization of communication applies to 

all users. The transmit symbol vector 𝒔 is formed by 

combining all the information symbols, denoted 

as [𝑠1, 𝑠2, 𝑠3, … , 𝑠𝐾  ]𝐾. The vector received at the base 

station after demodulation and sampling can be 

represented as  

𝒚 = 𝑯𝒔 + 𝒏,                                                            (1) 

In Eqn. (1), 𝑯 and 𝒏 represent the channel state 

information (CSI) and additive white Gaussian noise 

(AWGN), respectively. Received vector is shown by 𝒚. 

The Rayleigh flat fading channel between users and the 

base station is taken into consideration. The channel 

matrix is distributed according to a complex normal 

distribution with a mean of zero and a variance of one. 

Furthermore, each component of the AWGN vector 𝒏 is 

characterized by being independent and identically 

distributed as a complex normal random variable. 

 

 

 

Fig. 1. Massive MIMO communication 

 

 

3 Various symbol detection methods 

and their complexity calculation   

3.1 Minimum mean square error (MMSE) based 

 detection 

The linear detection techniques, such as the MMSE 

algorithm, produce near-optimal bit error rate (BER) 

performance in mMIMO systems due to the impact of 

the channel hardening phenomenon [4, 16]. The channel 

hardening phenomenon occurs when the number of base 

station antennas is increased and the mMIMO system 

becomes immune to channel fluctuations. The MMSE 

detection involves the formulation of a linear 

transformation matrix, 𝒔MMSE which aims to minimize 

the mean squared error between the linear 

transformation of the received vector, 𝒚, and the sent 

symbol vector, 𝒔 [17]. Equation (2) provides the 

expression for MMSE-based detection.   

𝒔MMSE+1 = (𝑯𝐻𝑯 +  𝜎2𝑰𝑼)−1𝑯𝐻𝒚.                 (2) 

Here, 𝑯 is the channel matrix, 𝒚 is the received signal 

vector, 𝜎2 is noise variance, 𝑯𝐻𝑯 is a Gramian matrix. 

(𝑯𝐻𝑯 + 𝜎2𝑰𝑼)−1 is a pseudo-inverse of 𝑯 along with 

noise variance, 𝜎2 and 𝑯𝐻𝒚 is the matched filter. The 

MMSE method handles noise and interference 

statistically. Noise-resistant MMSE, although more 

computationally demanding than the ZF 

detector, performs better in difficult channel 

circumstances [2, 7].  

The complexity analysis of MMSE can be outlined as 

follows: 

Matrix multiplications   𝑯𝐻𝑯: 𝑂(𝐾2𝑁) 

Matrix Vector multiplication  𝑯𝐻𝒚: 𝑂(𝐾𝑁)  

Matrix Addition   𝑯𝐻𝑯 + 𝜎2𝑰𝑼 : 𝑂(𝐾2) 

Matrix Inversion (𝑯𝐻𝑯 + 𝜎2𝑰𝑼)−1: 𝑂(𝐾3)  

Final Matrix Multiplication: 

(𝑯𝐻𝑯 + 𝜎2𝑰𝑼)−1𝑯𝐻𝒚: O(K2N) 

Total complexity  

= 𝑂(2𝐾2𝑁 + 𝐾𝑁 +  𝐾2 +  𝐾3)  ⟶ 𝑂(𝐾3) 

In MMSE, the matrix inversion step primarily 

dictates the overall complexity, particularly concerning 

the number of receivers and transmitters. 

 

3.2 Jacobi based detection  

A simple iterative method called the Jacobi method 

can be applied to solve a system which is diagonally 

dominant. In this method, the detected signal is 

determined as shown in Eqn. (3).   

𝒔𝐽𝐴+1 =  𝑫−1 (𝒔𝑀𝐹 + (𝑫 − 𝑾)𝒔𝐽𝐴)                (3) 

Here, the channel matrix is decomposed as 

𝑯 = 𝑫 + (𝑯 − 𝑫). 𝑫 is the diagonal matrix and 𝒔𝑀𝐹 is 

the matcher filter vector. The computational expense of 

a Jacobi-based detector is less than that of the NS-based 
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detector [4, 15, 18]. A detector utilizing the Jacobi 

approach has been developed in order to ensure that the 

initial iteration is devoid of multiplication, thereby 

reducing the overall complexity.  

The complexity of Jacobi can be broken down as 

below: 

Matrix-Vector Multiplications:  

1) 𝑫−𝟏𝒔𝑀𝐹: 𝑂(𝐾)  

2) (𝑫 − 𝑾)𝒔𝐽𝐴: 𝑂(𝐾2)  

Vector Additions: 𝒔𝑀𝐹 +  (𝑫 − 𝑾)𝒔𝐽𝐴  : 𝑂(𝐾) 

Component-wise Division: 

𝑫−1 (𝒔𝑀𝐹 +  (𝑫 − 𝑾)𝒔𝐽𝐴): 𝑂(𝐾) 

Total complexity: 𝑂(3𝐾 +  𝐾2)  ⟶ 𝑂(𝐾2) 

 

3.3 Newton iteration based detection 

The Newton-Raphson approach, sometimes known 

as the Newton iteration (NI), is an iterative method for 

approximating a matrix's inverse [15, 18]. Equation (4) 

represents the detector based on the NI. 

𝒔𝑁𝐼+1 =  𝑫−1(𝜎2𝑰𝑈 − 𝒔𝑁𝐼 𝑫−1)𝒔𝑀𝐹               (4) 

Similar to the NS approach, it solely necessitates a 

straightforward calculation to expedite the detection 

process. Despite the matrix multiplication required in 

each iteration, the NI outperforms the NS method in 

terms of convergence speed [4, 5].  

The complexity of NI can be broken down as below: 

Matrix Inversion: 𝑫−1: 𝑂(𝐾) 

Matrix Multiplications: 

1) 𝑫−1( 𝜎2𝑰𝑈): 𝑂(𝐾2) 

2) 𝑫−1( 𝒔𝑁𝐼 ) : 𝑂(𝐾) 

3) 𝑫−1(𝜎2𝑰𝑈 −  𝒔𝑁𝐼 𝐷−1): 𝑂(𝐾2) 

Vector-Matrix Multiplication: 

𝑫−1(𝜎2𝑰𝑈 −  𝒔𝑁𝐼 𝑫−1)𝒔𝑀𝐹: 𝑂(𝐾2) 

Total complexity = 𝑂(2𝐾 + 3𝐾2) ⟶ 𝑂(𝐾2) 

 

The complexity is influenced by the operations of 

matrix inversions, scalar multiplications, and matrix 

multiplications. 

 

3.4 ADMM based infinity norm (ADMIN) based 

 detection  

Typically, non-linear detectors, initially configured 

with a linear detector value, attempt to update the results 

in subsequent iterations. The ADMIN algorithm 

employs the alternate direction method of multipliers 

(ADMM) to address a detection problem involving box 

constraints [19]. The ADMM (Alternating Direction 

Method of Multipliers) technique can be employed to 

solve a convex issue by decomposing it into smaller sub 

problems and solving them iteratively [18]. 𝛽 represents 

a scaled version of noise variance 𝜎2. Two more 

iterations of the ADMIN algorithm are used to calculate 

the values of the 𝒛 𝑎𝑛𝑑 𝛌  vectors. Equation (5) bears  

a resemblance to the MMSE equation when  𝒛 = 𝟎 and 

𝛌 = 𝟎. 

Estimated signal vector 𝒙ADMIN is given by  

𝒔ADMIN+1 =  (𝑯𝐻𝑯 +  𝜎2𝑰𝑼)−1(𝑯𝐻𝒚 + 𝛽(𝐳 − 𝛌)) 

(5) 

The number of operations and time complexity 

calculation of the ADMM is similar to MMSE, which is 

already been explained.  

 

3.5 NSA based detection  

The Neumann series is a more widely used technique 

for approximating matrix inversion. Here, the channel 

matrix can be broken down into two parts: the off-

diagonal matrix 𝑬 and the diagonal matrix 𝑫 [4, 15]. 

Estimated signal vector 𝒔NSA is given as 

 𝒔𝑁𝑆𝐴+1 =  (𝑫−1𝑬)𝑝𝑫−1 𝒔𝑀𝐹                             (6) 

The complexity of NSA can be broken down as 

below. 

Matrix Inversion:   𝑫−1 : 𝑂(𝐾)  

Matrix Multiplication:    𝑫−𝟏𝑬 : 𝑂(𝐾2) 

Vector-Matrix Multiplication: 

(𝑫−1𝑬)𝑝𝑫−1 𝒔𝑀𝐹: 𝑂(𝐾3) 

Total complexity 

= 𝑂((𝑝 − 1)(𝐾3 + 𝐾2 + 𝐾) ⟶ 𝑂((𝑝 − 1)𝐾3) 

The number of iterations 𝑝 plays a significant role in 

the complexity calculation of NSA.   

 

3.6 QR decomposition-based detector  

In the context of the QR algorithm, it is pertinent to 

note that 𝑸 is a unitary matrix, 𝑹 represents an upper 

triangular matrix, and 𝒔𝑀𝐹 =  𝑯𝐻𝒚  is matched filter 

vector. A QR decomposition-based detector is 

represented by Eqn. (7). 

𝒔𝑄𝑅+1  =  𝑸𝑹−1 𝒔𝑀𝐹                                            (7) 

Here, the norm of a vector is computed as  𝑟𝑖,𝑖 =  ‖𝒒𝑖‖2. 

Off diagonal elements of the upper triangular matrix 

𝑹 are computed as  

𝑟𝑖,𝑗 =  𝒒𝑖
𝐻 𝒒𝒋 .                                                          (8) 

Further, 𝒒𝑖 and 𝒒𝑗 are vectors computed based on 

𝑟𝑖,𝑖 and 𝑟𝑖,𝑗  as given below. 

𝒒𝑖+1 =   
𝒒𝑖

𝑟𝑖,𝑖
⁄                                                       (9) 

𝒒𝑗+1 =   𝒒𝑗 −  𝑟𝑖,𝑗𝒒𝑖                                           (10) 

Complexity calculation of QR:  
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Orthogonal matrix:   𝑂(𝐾3) 

Matrix Inversion:   𝑹−1: 𝑂(𝐾2) 

Matrix-Vector Multiplication:  𝑸𝑹−1 𝒔𝑀𝐹: 𝑂(𝐾2) 

Total complexity = 𝑂(𝐾3 + 2𝐾2) ⟶ 𝑂(𝐾3) 

The dominant factor is the matrix-vector multi-

plication. 

 

3.7 Improved Gauss-Seidel  

The improved Gauss-Seidel detection method solves 

the linear system. The diagonal component 𝑫, the 

strictly lower triangular component 𝑳, and the strictly 

upper triangular component 𝑹, respectively, are the three 

components that make up the Gramian matrix. 

𝒔𝑀𝐹 = 𝑯𝐻𝒚 is a matched filter vector. The IGS 

method’s mathematical representation is as given in 

Eqn. (11). 

𝒔𝐼𝐺𝑆+1 =  (𝑫 + 𝑳)−1 ( 𝒔𝑀𝐹 − 𝑹 𝒔𝐼𝐺𝑆)         (11) 

Complexity calculation: 

Matrix Inversion:   (𝑫 + 𝑳)−1: 𝑂(𝐾) 

Matrix-Vector Multiplication:  𝑹 𝒔𝐼𝐺𝑆 : 𝑂(𝐾2)  

Vector Addition:  𝒔𝑀𝐹 − 𝑹 𝒔𝐼𝐺𝑆: 𝑂(𝐾) 

Matrix-Vector Multiplication: 

(𝑫 + 𝑳)−1 ( 𝒔𝑀𝐹 − 𝑹 𝒔𝐼𝐺𝑆): 𝑂(𝐾2)  

Total complexity = 𝑂(2𝐾 + 2𝐾2) ⟶ 𝑂(𝐾2) 

Matrix inversion and multiplication is the domination 

part of complexity in IGS. 

 

3.8 Conjugate gradient based detector  

The CG method is another more approximate 

method used in mMIMO detection which can be 

articulated as Eqn. (12). 

𝒔𝐶𝐺+1
(𝑝)

=   𝒔𝐶𝐺
(𝑝)

+  𝛼𝐶𝐺
(𝑝)

 𝒒𝐶𝐺
(𝑝)

                            (12) 

Here, 𝒒𝐶𝐺 refers to the conjugate direction in relation 

to the Gramian matrix and 𝛼𝐶𝐺  is a scalar parameter a 

scalar parameter typically referred to as the step size 

[18]. In the Conjugate Gradient (CG) method, the 

determination of the conjugate direction relies on the 

Gramian matrix. The CG technique typically involves 

iterative updates that calculate the conjugate direction 

using the previous residual and the previous conjugate 

direction. 

The complexity calculation of CG is as below. 

Matrix-vector multiplication:   𝑂(𝐾2) 

Element-wise vector addition and scalar multiplication

   𝒔(𝑝) +  𝛼(𝑝)𝒒(𝑝): 𝑂(𝐾) 

Total Complexity  

= 𝑂((𝑝 + 1)(𝐾2 + 𝐾)) ⟶ 𝑂((𝑝 + 1)𝐾2) 

 

The number of iterations is the dominant factor in CG 

detection. 

To summarize, Tab. (1) provides a comparative chart 

dealing with the computational complexities of various 

detection algorithms.  

 

Table 1. Computational complexity comparison 

Algorithms Computational complexity 

MMSE 𝑂(2𝐾2𝑁 + 𝐾𝑁 +  𝐾2 +  𝐾3) = 𝑂(𝐾3) 

ADMIN 𝑂(2𝐾2𝑁 + 𝐾𝑁 + 𝐾3 +  𝐾2 + 𝐾) = 𝑂(𝐾3) 

NSA 𝑂((𝑝 − 1)(𝐾3 + 𝐾 + 𝐾)) = 𝑂(𝑝𝐾3) 

IGS 𝑂(2𝐾 + 2𝐾2) = 𝑂(𝐾2) 

QR 𝑂(𝐾3 + 2𝐾2) = 𝑂(𝐾3) 

JA 𝑂(3𝐾 +  𝐾2) =  𝑂(𝐾2) 

NI 𝑂(2𝐾 + 3𝐾2) = 𝑂(𝐾2) 

CG 𝑂((𝑝 + 1)(𝐾2 + 𝐾)) = 𝑂(𝑝𝐾2) 

 

This analysis helps to understand how the algorithm's 

performance scales with input size. The notation "𝑂" 

represents the upper bound of computational com-

plexity, with 𝐾 representing the number of users in the 

mMIMO system and 𝑁 is number of the base station 

antennas. 

The comparison reveals that both MMSE and 

ADMIN share the same computational com-

plexity 𝑂(𝐾3), indicating that as the input size increases, 

both algorithms exhibit cubic growth in their running 

times. This suggests that the MMSE and ADMIN 

algorithms share similarities in their underlying 

mathematical operations, leading to similar compu-

tational demands. QR also exhibits the complexities of 

cubic growth 𝑂(𝐾3). NSA's and CG's performance is 

more computationally intensive due to the significant 

role played by the number of iterations, in addition to the 

cubic and quadrature terms of the user count 

respectively. JA and IGS have the lowest complexity of 

𝑂(𝐾2). In addition to complexity, the algorithm is 

selected based on various other characteristics of the 

communication system, such as the size of the input data, 

available computational resources, CSI information, 

number of iterations, etc. 

 

4 Simulation results and discussions 

Figures 2 to 10 present numerical data illustrating 

the SER performance across varying SNR levels for 

MMSE, NS, NI, JA, GS, CG, QR, and ADMIN for 

mMIMO communication systems. These simulations 

were conducted using MATLAB R2021a with the 

parameters shown in Tab. (2). 
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Table 2. Parameter specifications used 

in simulations using MATLAB 2021a 

Parameters Value  

Channel characteristics 
Massive MIMO  

with AWGN  

Fading model Rayleigh fading 

Modulation index M 32 and 64 QAM 

Number of transmitting  

(BS) antennas N 
64 and 128 

Number of receiving (user) 

antennas K 
8 and 16 

Number of symbols transmitted 

per user 
105 

Tolerance for convergence ε 10–6 

SNR range 5 to 15 (dB) 

Iteration count 𝑝 1 to 4 

User-to-BS ratio for N = 64,  

K = 8 
0.125  

User-to-BS ratio for N = 64,  

K = 16 
0.25  

User-to-BS ratio for N = 128,  

K = 8 
0.0625 

Correlation factor α 0.4, 0.6, 0.8 

 

 

4.1 Performance analysis with regard to the symbol 

      error rate    

 

 

Fig. 2. SER performance for 𝑁 × 𝐾 = 64 × 8, 𝑝 = 3, 

𝑀 = 32 and user-to-BS ratio of 0.125 

 

 

Fig. 3. SER performance for 𝑁 × 𝐾 = 64 × 8, 𝑝 = 3, 

𝑀 = 64 and user-to-BS ratio of 0.125 

 

 

Fig. 4. SER performance for 𝑁 × 𝐾 = 64 × 16, 𝑝 = 3, 

𝑀 = 32 and user-to-BS ratio of 0.25 

 

 

Fig. 5. SER performance for 𝑁 × 𝐾 = 64 × 16, 𝑝 = 3, 

𝑀 = 64 and user-to-BS ratio of 0.25 

 

This section involves a thorough evaluation of 

several detection methods for mMIMO detection 
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systems in terms of the symbol error rate (SER) 

performance against the signal-to-noise ratio (SNR) 

expressed in (dB).  

This section will look at how the ratio of user-to-BS 

antennas and the modulation index affect the detection 

methods' performance. Comparing the results in Figs. 2, 

3, 4, and 5, it is clear that the consistency of the 

performance of detection techniques heavily depends on 

the ratio of user-to-BS antennas. High ratios yield 

promising results, but their usefulness decreases as the 

ratio decreases. This impact can clearly be seen where 

64 base station antennas are fixed and users are changed 

from 16 to 8, giving a user-to-BS ratio of 0.25 and 0.125, 

respectively. The performance of NS, NI, CG, and JA 

significantly deteriorates as the ratio increases from 

0.125 to 0.25. A similar effect is seen with 128 BS 

antennas and a user-to-BS ratio of 0.0625 too. IGS is 

moderately okay, whereas the performance of ADMIN 

and QR are close to the MMSE. In fact, for user-to-BS 

ratio of 0.25, all methods except MMSE, ADMIN, and 

QR perform poorly.  

 

 

Fig. 6. SER performance for 𝑁 × 𝐾 = 128 × 16, 
  𝑝 = 3, 𝑀 = 32  and user-to-BS ratio of 0.125 

 

 

Fig. 7. SER performance 𝑁 × 𝐾 = 128 × 16, 𝑝 = 3, 

𝑀 = 64 and user-to-BS ratio of 0.125 

The results shown in Figs. 2, 3, and 8 demonstrate 

that increasing the number of base stations from 64 to 

128, keeping the number of users fixed, significantly 

improves the performance of NS, NI, CG, and JA, but 

also achieves desirable symbol error at lower SNR levels 

due to the channel hardening phenomenon. But, using a 

very large number of antennas is not always a good 

choice, as the hardware resources needed are also huge. 

Therefore, the tradeoff between user-to-BS ratio and 

modulation index must be worked out to avoid the use 

of extra resources for the hardware implementation of 

detector algorithms.  

The modulation index also has a direct impact on 

SER performance. Here it can be seen that a higher 

modulation index achieves higher data rates at the cost 

of more SNR compared to a lower modulation index at 

the expense of a heightened susceptibility to noise. 

Notably, 64-QAM demands a higher SNR for the same 

error performance compared to 32-QAM. So, detector 

with 32-QAM works well in channels with a lot of noise.  

 

 

Fig. 8. SER performance for 𝑁 × 𝐾 = 128 × 8, 𝑝 = 3, 

𝑀 = 64 and user-to-BS ratio of 0.0625 

 

To summarize, non-linear detectors like ADMIN and 

QR-based perform best near MMSE but have the highest 

complexity of 𝑂(𝐾3). NS, NI, CG, and Jacobi detectors 

fail to converge. IGS is performing moderately close to 

MMSE, especially when the user-to-BS ratio is at its 

minimum. In all scenarios, nonlinear algorithms with 

cubic complexity perform well, particularly when the 

ratio between base station (BS) antennas and number of 

users is limited. These kinds of scenarios are common in 

5G and beyond networks. Consequently, nonlinear 

detectors based on perfect inversion are anticipated to 

remain attractive in the future as reliable options due to 

their ability to meet industry requirements for durability 

and consistent performance across diverse circum-

stances. ADMIN and QR's superior performance faces 

hardware complexity challenges, suggesting the use of 
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less complex, moderately performing algorithms like 

IGS for hardware implementation in 5G and 6G 

communication networks and emerging wireless 

technologies like IoT, WSN, V2X, and M2M. The next 

section will delve into the effect of the initial solution 

vector on the IGS algorithm. 

 

4.2 Effect of initial solution and iterations 

      on the convergence analysis of IGS 

The convergence of detection algorithms in mMIMO 

communication systems depends on a variety of factors, 

including initial conditions, channel matrix 

conditioning, modulation scheme, computational 

requirements, and numerical stability. This section 

explains the effect of the initial solution and number of 

iterations on the convergence of the IGS algorithm, 

which is less complex than ADMIN and QR but 

performs moderately throughout. In Fig. 9, the SER 

performance of IGS for the initial solution of  

𝒔(0) =  𝑫−𝟏 and 𝒔(0) =  𝑾𝟐
−𝟏 𝒚𝑴𝑭  can be seen for the 

number of iterations from 1 to 4. As compared to zero 

vector as the initial solution, the performance of IGS is 

better for 𝒔(0) =  𝑫−𝟏, which further improves for 

𝒔(0) =  𝑾𝟐
−𝟏 𝒚𝑴𝑭. As shown in Fig. 9, IGS is performing 

closer to MMSE for K = 4, and 𝒔(0) =  𝑾𝟐
−𝟏 𝒚𝑴𝑭. 

 

 

Fig. 9. SER performance for 𝑁 × 𝐾 = 128 × 16, 
𝑀 = 64, 𝑝 = 1, 2, 3, 4, 𝒔(0) = 𝑫−1 and 𝑾𝟐

−𝟏 𝒚𝑴𝑭 

 

4.3 Effect of correlation factor on the convergence   

analysis of IGS 

The correlation between antenna elements in 

mMIMO communication systems influences detection 

performance due to spatial closeness and spatial 

multiplexing capacity, limiting potential data rate and 

capacity increases. Strong antenna correlation can cause 

channel estimation inaccuracies, impacting symbol 

detection algorithms. Tightly spaced antennas 

streamline hardware implementation but require 

meticulous attention for signal detection. The effect of 

the correlation factor on IGS performance can be seen in 

Fig. 10. Here, IGS performance for iteration 

𝑝 = 3 and 4, 𝒔(0) = 𝑾𝟐
−𝟏 𝒚𝑴𝑭 and α = 0.2, 0.4 and 0.8 

can be seen. As the correlation factor increases, IGS 

performance deteriorates, which implies that IGS will 

not be a better choice in highly correlated environments.  

 

 

Fig. 10. SER performance for 𝑁 × 𝐾 = 128 × 16, 
𝑀 = 64, 𝑝 = 3, 4, α = 0.2, 0.4, 0.6,   

and 𝒔(0) = 𝑫−1 and 𝑾𝟐
−𝟏 𝒚𝑴𝑭 

 

5 Conclusion 

In this study, a comprehensive analysis of the 

computation complexity of seven symbol detection 

algorithms (ADMIN, NS, NI, JA, IGS, CG, and QR) is 

conducted against a linear near-optimal MMSE based 

detector in terms of symbol error rate, convergence rate, 

initial solution vector, and correlation factor. SER 

performance is evaluated in an 8 and 16 user mMIMO 

system with 64 and 128 base station antennas, 

considering different user-to-base station ratios (0.0625, 

0.125, and 0.25), modulation scheme (M = 32 and 64 

QAM), iterations (𝑝 = 1, 2, 3, and 4), correlation factor 

(𝛼 = 0.2, 0.4, and 0.6), and initial solution vector  

(𝒔(0)= zero vector,  𝑫−1 and 𝑾𝟐
−𝟏 𝒚𝑴𝑭).  

From SER vs. BER performance, it is observed that 

nonlinear methods like ADMIN and QR achieve 

performance close to MMSE, with a time complexity of  

𝑂(𝐾3). Conversely, NS, NI, CG, and JA exhibit 

instability. Additionally, 64-QAM requires a higher 

SNR than 32-QAM for equivalent error performance. 

32-QAM exhibits better error performance at lower 

SNRs, demonstrating its robustness in noisy channels. 

However, it's important to note that higher-order QAM 

schemes are advantageous for achieving higher data 

rates despite being more vulnerable to noise.  

Furthermore, when the user-to-base station ratio is 

increased from 0.125 to 0.25, the performance of NS, NI, 
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CG, and JA significantly deteriorates. IGS performance 

is moderately satisfactory for all considered user-to-BS 

ratios with a lower time complexity of 𝑂(𝐾2).  Non-

linear ADMIN and QR detectors are close to MMSE 

with a time complexity of 𝑂(𝐾3). 

Upon evaluating detector performance against 

different initial solutions, it is found that IGS performs 

better with the initial solution  𝒔(0) =  𝑫−𝟏, as compared 

to the zero vector, which further improves with 

𝒔(0) =  𝑾𝟐
−𝟏 𝒚𝑴𝑭. The performance of 𝒔(0) =

 𝑾2
−1 𝒚𝑀𝐹 for 𝑝 = 3, 4 iterations closely matches 

MMSE with a lower time complexity of 𝑂(𝐾2). Lastly, 

when assessing the impact of correlation, nonlinear 

detectors like ADMIN and QR outperform linear 

detectors like IGS.  

The results clearly indicate that, with a properly 

selected initial solution and an appropriate number of 

iterations, the IGS-based linear detector can achieve 

performance that is nearly optimal. More importantly, 

IGS convergence is achieved with a significantly lower 

computational complexity of 𝑂(𝐾2) as compared to 

other detection methods. This highlights the IGS-based 

detector's suitability for balancing performance and 

computational demands for the hardware realization of 

mMIMO future-generation detectors. The in-depth look 

at different detection methods in this study, including 

SER, user-to-base station ratios, modulation scheme, 

iterations, correlation factor, and initial solution vector, 

will also help researchers choose the best detection 

methods for next-generation communication. Future 

studies could extend these techniques to various fading 

models. 
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