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Models and methods for RZ-signals distinction in non-Gaussian noise  

for information-measurement systems 

 
Volodymyr Palahin, Oleksandr Zorin 

 
Polynomial Decision Rules (DR) for the problems of discrete RZ (Return-to-Zero) signal distinction in asymmetric-excess 

non-Gaussian noise are proposed. A new approach is proposed, which is based on the use of a modified moment quality 

criterion of statistical hypothesis testing and the application of higher-order statistics to describe the characteristics of non-

Gaussian noise. Simulation of the DR with different parameters of the signal and noise was carried out. It is shown that taking 

into account the coefficients of skewness and kurtosis of the non-Gaussian noise the efficiency of signal distinction increases 

with non-linear processing DR compared to known results, which are optimal for the Gaussian noise model. The conducted 

studies demonstrate a reduction in false decisions in the processing of RZ signals when considering the coefficients of skewness 

and kurtosis of non-Gaussian noise. Such an increase in efficiency can exceed twofold, depending on the noise parameters.  

It is shown that the efficiency of the proposed approach is much higher for small SNR (Signal-to-Noise Ratio) values, for 

example, less than 1. 
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1 Introduction 

Developing new models and methods for signal 

processing is crucial for advancing modern technical 

systems, as it enables enhanced performance, efficiency, 

and adaptability to diverse environments. Data 

transmission and reception systems are a defining part of 

modern diagnostic, control, management, and other 

systems. The development of such systems is 

characterized by growing requirements for the quality of 

processing received data. When designing these 

systems, one of the types of linear message encoding 

used is RZ encoding [1]. This type of coding has several 

advantages, namely: 

• simple implementation compared to multi-level 

coding methods; 

• elimination of the problem of constant offset by 

using opposite potential levels; 

• self-synchronization of signals in communi-

cation systems. 

Various destabilizing factors affect the functioning of 

these systems during data transmission. The influence of 

noise degrades the quality and efficiency of these 

systems. Destabilizing factors arise during the multipath 

propagation of radio signals, as they pass through 

heterogeneous media, fluctuations in communication 

channel parameters, etc. In most practical cases, such 

destabilizing factors are random non-Gaussian processes 

[2-4]. 

Traditionally, the design of systems for signal 

detection and distinction has depended on classical 

methods from statistical hypothesis testing theory. This 

theory typically does not restrict the type of probability 

density distribution for random variables [4-8]. 

However, the traditional approach to researching and 

developing discrete signal processing systems in non-

Gaussian noise is characterized by significant 

limitations. These limitations are associated with the 

complexity of algorithmic implementation of classical 

methods and the increased demand for computing 

resources, leading to difficulties in creating high-quality 

software and hardware for signal processing. 

Recent research suggests that an alternative approach 

to solving problems related to the processing of non-

Gaussian processes can be quite effective. This method 

for describing the statistical properties of random 

variables does not rely on probability density functions 

(PDF) of the distribution of random processes. Instead, 

it utilizes other characteristics in the form of a sequence 

of moments and cumulants. This sequence forms higher-

order statistics (HOS), allowing for an acceptable 

approximation of the statistical properties of non-

Gaussian processes [9-12]. 

It is important to emphasize the special significance 

of characteristics such as cumulants and cumulant 

coefficients. Unlike moments, these parameters have 

independent statistical significance and allow for the 

description of the characteristics of the non-Gaussian  
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distribution of random variables. This approach 

increases the accuracy of processing non-Gaussian 

signals compared to the traditional correlation method, 

despite constraints on complexity. Additionally, the 

complexity of signal detection and discrimination 

algorithms is reduced, and it becomes possible to 

account for the correlations of non-Gaussian random 

variables when using multidimensional moments and 

cumulants. 

The moment-cumulant approach to describing ran-

dom variables allows for an acceptable approximation of 

the statistical properties of non-Gaussian processes and 

improves the accuracy of processing these processes 

compared to traditional correlation methods [13-17]. 

Statistical methods of signal processing based on higher-

order statistics are widely used in the development of 

data reception systems over noisy communication 

channels, where traditional methods are less effective 

[18-21]. 

The purpose of this work is to improve the efficiency 

of data reception systems for distinguishing RZ signals 

in non-Gaussian noise by applying the moment-

cumulant representation of random variables. This 

includes developing a moment quality criterion for 

statistical hypothesis testing and polynomial decision 

rules [22-25]. 

Problem statement. Let random signals 𝜉𝑖(𝑡),  

𝑖 = 0,1,2 be observed on the observation interval 
(0 − 𝑇) which are an additive mixture of constant useful 

signals 𝑎1 and 𝑎2 in asymmetric-excess non-Gaussian 

noise with zero mathematical expectation and variance  

𝜒2: 𝜉0(𝑡) = 𝜂(𝑡), 𝜉1(𝑡) = 𝑎𝑖 + 𝜂(𝑡), 𝜉2(𝑡) = −𝑎𝑖 +
𝜂(𝑡), 𝑖 = 1,2.  

From the random signals 𝜉𝑖(𝑡), 𝑖 = 0,1,2 we obtain a 

vector of sample values 𝑋 = {𝑥1, 𝑥2, … 𝑥𝑛}.  Based on 

the processing results of these values, it is necessary to 

make a decision on the implementation of the hypothesis 

𝐻1 or 𝐻2. The implementation of these hypotheses 

corresponds to the reception of a constant useful signal 

𝑎1 or (−𝑎2), respectively, Otherwise, a decision is made 

to implement the hypothesis 𝐻0, which characterizes the 

presence of additive non-Gaussian noise. 

Each received signal corresponds to a moment-

cumulant description, presented in the form of a finite 

sequence of moments 𝑚𝑖[{0, 𝜒𝑖2, 𝛾𝑖3, … 𝛾𝑖𝑗}]], where 

𝛾𝑖3, … 𝛾𝑖𝑗  are cumulant coefficients that describe the 

parameters of non-Gaussian noise η(t). 

 

2 Models and methods of RZ – signals distinction  

in non-Gaussian noise 

In line with the classical approach, the optimal 

Bayesian signal detection algorithm is characterized as 

the one that minimizes the average risk [5-8]. The 

fundamental statistic essential for hypothesis testing is 

identified as the likelihood ratio, which can be obtained 

from 

𝛬(𝑿) =
𝑃(𝑿|𝐻1)

𝑃(𝑿|𝐻0)
.  (1) 

The solution to such problems is typically formulated 

under the assumption that the random variables adhere 

to the Gaussian probability density function (PDF). 

However, deriving solutions in the format of equation 

(1) for non-Gaussian PDFs poses challenges due to the 

inherent uncertainty in the PDF, parameters, and 

algorithmic implementation. Hence, alternative 

approaches are needed to circumvent these issues. One 

such alternative approach may entail expressing the 

likelihood ratio as a power-law polynomial function, as 

detailed in references [15, 22-25]. 

Assume the likelihood ratio in Eqn. (1) is a 

continuous function and is represented as a stochastic 

power polynomial of degree 𝑠 for independent random 

samples 𝑥𝑣: 

𝛬(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑘0 + ∑ ∑ 𝑘𝑖𝑣𝜙𝑖(𝑥𝑣)𝑛
𝑣=1


𝑖=1 ,   (2) 

where the functions 𝜙𝑖(𝑥𝑣) represent transformations of 

sample values 𝑥𝑣, which may include power or 

trigonometric functions. The coefficients 𝑘𝑖𝑣 and 𝑘0 are 

unknown parameters chosen based on the relevant 

quality criterion. Furthermore, if the functions 

𝜙𝑖(𝑥𝑣) are linearly independent and form a basis, then 

for a broad class of functions 𝛬(𝑿) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛), 

a decomposition in the form of series (2) is feasible. 

In practice, instead of infinite series (2), polynomials 

with a finite number of terms are used. 

Then an expression of the form 

𝛬(𝑿)𝑠𝑛 = 𝑘0 + ∑ ∑ 𝑘𝑖𝑣𝜙𝑖(𝑥𝑣)𝑛
𝑣=1

𝑠
𝑖=1 ,  (3) 

where 𝑥𝑣 are random variables, this will be referred to as 

a generalized stochastic polynomial of degree s with 

dimension n. 

This stochastic polynomial (3), as a function of the 

sample values, is a function of the likelihood ratio, which 

can be used in the form of DR to test statistical 

hypotheses. In the case of using power-law transforma-

tions of sample values, the DR for uniformly distributed 

random variables takes the form: 

𝛬(𝑿)𝑠𝑛 = 𝑘0 + ∑ ∑ 𝑘𝑖𝑣𝑥𝑣
𝑖𝑛

𝑣=1
𝑠
𝑖=1

𝐻1

>
<
𝐻0

0,  (4) 

where unknown coefficients 𝑘𝑖𝑣 and 𝑘0 (4) can be 

determined by minimizing a well-known probabilistic 

quality criterion such as Bayes or minimax criterion. 

However, this determination can be complex in general 

cases. Therefore, a new moment-based quality criterion 
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for statistical hypothesis testing is proposed [15, 23-25]. 

Let us outline the development of such a quality criterion 

for testing statistical hypotheses. 

Let us assume that there exists a DR 

𝛬(𝑿) = 𝛾(𝑿) − 𝑘0

𝐻1

>
<
𝐻0

0. (5) 

where 𝛾(𝑿) – function from sample values 𝑿 and 𝑘0 is 

chosen so that  

𝑀0 = 𝐸 [
𝛬(𝑿)

𝐻0
] = ∫ 𝛬(𝑿)𝑝(𝑿 𝐻0⁄ )𝛱 𝑑𝑥

∞

−∞
< 0,  

𝑀1 = 𝐸 [
𝛬(𝑿)

𝐻1
] = ∫ 𝛬(𝑿)𝑝(𝑿 𝐻1⁄ )𝛱 𝑑𝑥

∞

−∞
≥ 0. 

The probabilities of type I and II errors are defined 

according to the Chebyshev inequality: 

𝛼 = 𝑃 [𝛬(𝑿) ≥
0

𝐻0
] ≤ 𝐺0 𝑀0

2⁄ = 𝛼0, 

𝛽 = 𝑃 [𝛬(𝑿) <
0

𝐻1
] ≤ 𝐺1 𝑀1

2⁄ = 𝛽0, 

where 𝐺𝑖(𝛾) = ∫ [𝑓(𝐗) − 𝑀𝑖]2𝑝(𝐗 𝐻𝑖⁄ )Π 𝑑𝑥
∞

−∞
 

represents the variance of the decision function 𝛾(𝐗) 

for hypothesis 𝐻𝑖, 𝑖 = 0,1.  

Then the sum of error probabilities can be expressed as  

𝐹(𝛼, 𝛽) = 𝛼 + 𝛽 ≤ 𝛼0 + 𝛽0 =
𝐺0

𝑀0
2 +

𝐺1

𝑀1
2 = 𝛷(𝐺, 𝑀).(6) 

Let us take that for expression 𝑀0 and 𝑀1 the 

coefficient 𝑘0 is defined as: 

𝑘0 = 0.5(𝐸0 + 𝐸1), (7) 

where 𝐸𝑖(𝛾) = 𝐸[𝛾(𝐗)|𝐻𝑖] - the mean of the decision 

function 𝛾(𝐗) (5) for hypothesis 𝐻𝑖, 𝑖 = 0,1. 

Then, the function Φ(𝐺, 𝑀) (6) for such coefficient 

𝑘0 (7) has the form Φ(𝐺, 𝑀) =  4𝐾𝑢1( 𝐺, 𝐸) , where 

𝐾𝑢1(𝐸, 𝐺) =
𝐺0(𝑠𝑛)+𝐺0(𝑠𝑛)

(𝐸1(𝑠𝑛)−𝐸0(𝑠𝑛))
2,  (8) 

where the mean 𝐸𝑖(𝑠𝑛) and the variance 𝐺𝑖(𝑠𝑛) of the DR 

(4) of power S for hypotheses 𝐻𝑖 (i=0,1) for sample 

values of volume n are defined as 

𝐸0(𝑠𝑛) = ∑ ∑ 𝑘𝑖𝑣𝑢𝑖
𝑠
𝑖=1

𝑛
𝑣=1 ,  (9) 

𝐸0(𝑠𝑛) = ∑ ∑ 𝑘𝑖𝑣𝑚𝑖
𝑠
𝑖=1

𝑛
𝑣=1 , (10) 

𝐺0(𝑠𝑛) = ∑ ∑ ∑ 𝑘𝑖𝑣𝑘𝑗𝑣𝐹(𝑖,𝑗)𝑣
𝑠
𝑗=1

𝑠
𝑖=1

𝑛
𝑣=1 (𝐻0), (11) 

𝐺0(𝑠𝑛) = ∑ ∑ ∑ 𝑘𝑖𝑣𝑘𝑗𝑣𝐹(𝑖,𝑗)𝑣
𝑠
𝑗=1

𝑠
𝑖=1

𝑛
𝑣=1 (𝐻1),  (12) 

where 𝑚𝑖, 𝑢𝑖 - the initial moments of the i-th order for 

hypotheses 𝐻1 and 𝐻0 respectively in (9-12), 

𝐹(𝑖,𝑗)𝑣(𝐻0) = 𝑢(𝑖+𝑗)𝑣 − 𝑢𝑖𝑣𝑢𝑗𝑣, 𝐹(𝑖,𝑗)𝑣(𝐻1) =

𝑚(𝑖+𝑗)𝑣 − 𝑚𝑖𝑣𝑚𝑗𝑣. 

Definition 1. Let us define the functional 𝐾𝑢1(𝐸, 𝐺) 

as the quality criterion for decision making.  We assume 

that the optimal coefficients 𝑘0 in the form of (7) and 

𝑘𝑖𝑣, which minimize the right-hand side of (8), form the 

basis of this criterion, referred to as the "Moment quality 

criterion of probability upper bound errors" for statistical 

hypothesis testing, or briefly the "Ku1 criterion". 

The proposed quality criterion provides an upper 

bound on the probabilities of errors of the first and 

second kind for the DR (4), offering a clear 

interpretation. The minimum of the Ku1 criterion (8) 

corresponds to minimizing the error probabilities of the 

DR. This minimum is achieved when the variances (11, 

12) of the decision rule are minimal, and the distance 

between the mean (9, 10) of the decision rule for the 

hypothesis and the alternative is maximal. 

The optimal coefficients 𝑘𝑖𝑣  for the decision rule can 

be determined by minimizing the proposed quality 

criterion (8). Specifically, we use the following system 

of linear equations to find such coefficients: 

∑ 𝑘𝑗𝑣
 [𝐹(𝑖,𝑗)𝑣

 (𝐻0) + 𝐹(𝑖,𝑗)𝑣
 (𝐻1)]𝑠

𝑗=1 = 𝑚𝑖𝑣
 − 𝑢𝑖𝑣

 ,  (13) 

i=1,s. 

This approach has proven effective in solving various 

signal detection problems [22-25]. Let us adapt this 

method for multi-alternative statistical hypotheses 

testing, using the example of distinguishing RZ-signals 

in non-Gaussian nois. In this case the likelihood ratio for 

multi-alternative statistical hypotheses testing 𝐻𝑔 and 𝐻𝑟 

for independent and unequally distributed random 

samples 𝑥𝑣 will differ from (4) and defined as 

𝛬(𝑿)𝑠𝑛
(𝑔𝑟)

= ∑ ∑ 𝑘𝑖𝑣
(𝑔𝑟)

𝑥𝑣
𝑖 + 𝑘0

(𝑔𝑟)𝑛
𝑣=1

𝐻𝑟

>
<
𝐻𝑔

0𝑠
𝑖=1 , (14) 

where 𝑔, 𝑟 = 0, 𝑁 − 1,   𝑔 ≠ 𝑟 and the unknown 

optimal coefficients 𝑘𝑖
(𝑔𝑟)

 are determined by minimizing 

the adapted moment quality criterion for multi-

alternative statistical hypotheses testing: 

𝐾𝑢2(𝐸, 𝐺)(𝑔𝑟) =
𝐺𝑔

(𝑔𝑟)
[𝛾]+𝐺𝑟

(𝑔𝑟)
[𝛾]

(𝐸𝑔
(𝑔𝑟)

[𝛾]−𝐸𝑟
(𝑔𝑟)

[𝛾])
2, (15) 

and 𝑘0
(𝑔𝑟)

 is chosen as the average of the mean functions 

𝐸𝑔
(𝑔𝑟)

 and 𝐸𝑟
(𝑔𝑟)

 for hypothesis testing 𝐻𝑔 and 𝐻𝑟 in DR 

(14): 

𝑘0
(𝑔𝑟)

= −
1

2
(𝐸𝑔

(𝑔𝑟)
+ 𝐸𝑟

(𝑔𝑟)
) = 

−
1

2
∑ ∑ 𝑘𝑖𝑣

(𝑔𝑟)
(𝑚𝑖𝑣

(𝑔)
+ 𝑚𝑖𝑣

(𝑟)
)𝑛

𝑣=1
𝑠
𝑖=1 ,  (16) 

𝑔, 𝑟 = 0, 𝑁 − 1,   𝑔 ≠ 𝑟. 
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The minimum value of criterion (15) also guarantees 

the minimization of the sum of the upper bounds of the 

probabilities of errors of the first and second kind for the 

DR (14). It is demonstrated that the optimal DR 

coefficients 𝑘𝑖𝑣
(𝑔𝑟)

 in (14) will be determined by the 

following system of equations 

∑ 𝑘𝑗𝑣
(𝑔𝑟)

[𝐹(𝑖,𝑗)𝑣
(𝑟)

+ 𝐹(𝑖,𝑗)𝑣
(𝑔)

]𝑠
𝑗=1 = 𝑚𝑖𝑣

(𝑔)
− 𝑚𝑖𝑣

(𝑟)
,   (17) 

𝑣 = 1, 𝑛, 𝑖 = 1, 𝑠,   𝑔, 𝑟 = 0, 𝑁 − 1,   𝑔 ≠ 𝑟. 

 

Definition 2. Let us define the functional 𝐾𝑢2(𝐸, 𝐺) 

as the moment quality criterion for decision making in 

the form of DR (14). We assume that the optimal DR 

coefficients 𝑘0
(𝑔𝑟)

 in (16) and 𝑘𝑖𝑣
(𝑔𝑟)

, which minimize the 

right-hand side of (15), constitute this criterion, termed 

the "Modified Moment Quality Criterion of Probability 

Upper Bound Errors for Multiple Statistical Hypothesis 

Testing" or briefly the MMQC criterion. A lower value 

of the criterion (15) indicates a reduced likelihood of 

errors in the DR (14). 

The mean and variance of DR (14) for multiple 

hypotheses testing 𝐻𝑔 and 𝐻𝑟 are defined as follows: 

𝐸𝑔
(𝑔𝑟)

= ∑ ∑ 𝑘𝑖𝑣
(𝑔𝑟)

𝑚𝑖𝑣
(𝑔)𝑛

𝑣=1
𝑠
𝑖=1 ,  (18) 

𝐸𝑟
(𝑔𝑟)

= ∑ ∑ 𝑘𝑖𝑣
(𝑔𝑟)

𝑚𝑖𝑣
(𝑟)𝑛

𝑣=1
𝑠
𝑖=1 ,  (19) 

𝐺𝑔
(𝑔𝑟)

= ∑ ∑ ∑ 𝑘𝑖𝑣
(𝑔𝑟)𝑛

𝑣=1 𝑘𝑗𝑣
(𝑔𝑟)

𝐹(𝑖,𝑗)𝑣
(𝑔)𝑠

𝑗=1
𝑠
𝑖=𝑠 , (20) 

𝐺𝑟
(𝑔𝑟)

= ∑ ∑ ∑ 𝑘𝑖𝑣
(𝑔𝑟)𝑛

𝑣=1 𝑘𝑗𝑣
(𝑔𝑟)

𝐹(𝑖,𝑗)𝑣
(𝑟)𝑠

𝑗=1
𝑠
𝑖=𝑠 ,  (21) 

where 𝑚𝑖𝑣
(𝑟)

, 𝑚𝑖𝑣
(𝑔)

 are the initial moments of the 𝑖 −th 

order of the random variable 𝜉 for hypotheses 𝐻𝑟 and 𝐻𝑔 

respectively, 

𝐹(𝑖,𝑗)𝑣
(𝑔)

= 𝑚(𝑖+𝑗)𝑣
(𝑔)

− 𝑚𝑖𝑣
(𝑔)

𝑚𝑗𝑣
(𝑔)

, 

𝐹(𝑖,𝑗)𝑣
(𝑟)

= 𝑚(𝑖+𝑗)𝑣
(𝑟)

− 𝑚𝑖𝑣
(𝑟)

𝑚𝑗𝑣
(𝑟)

. 

Then, the general structure of the DR (14) for 

multiple statistical hypothesis testing 𝐻𝑔 and 𝐻𝑟 is 

defined: 

𝐻𝑔: 𝑚𝑎𝑥
𝑔=1,𝑁−1

{∑ ∑ 𝑘𝑖𝑣
(𝑔0)

𝑥𝑣
𝑖 + 𝑘0

(𝑔0)𝑛
𝑣=1

𝑠
𝑖=1 } > 0;  

𝐻0: 𝑚𝑎𝑥
𝑔=1,𝑁−1

{∑ ∑ 𝑘𝑖𝑣
(𝑔0)

𝑥𝑣
𝑖 + 𝑘0

(𝑔0)𝑛
𝑣=1

𝑠
𝑖=1 } < 0. 

 ∑ ∑ 𝑘𝑖𝑣
(𝑔0)

𝑥𝑣
𝑖 + 𝑘0

(𝑔0)𝑛
𝑣=1

𝑠
𝑖=1 > ∑ ∑ 𝑘𝑖𝑣

(𝑟0)
𝑥𝑣

𝑖 +𝑛
𝑣=1

𝑠
𝑖=1

𝑘0
(𝑟0)

, 𝑔, 𝑟 = 0, 𝑁 − 1,   𝑔 ≠ 𝑟, 𝑖 = 1, 𝑠. 

 

 

Property 1. If the optimal DR (14) coefficients are 

determined by solving the system of algebraic equations 

(17), then they satisfy the following condition 

𝐼 sn
(gr) = ∑ ∑ 𝑘𝑗𝑣

(𝑔𝑟)
𝑘𝑖𝑣

(𝑔𝑟)
[𝐹(𝑖,𝑗)𝑣

(𝑔)
+ 𝐹(𝑖,𝑗)𝑣

(𝑟)
]𝑠

𝑖=1
𝑛
𝑣=1 =

∑ ∑ 𝑘𝑖𝑣
(𝑔𝑟)𝑠

𝑖=1 (𝑚𝑖𝑣
(𝑔)

− 𝑚𝑖𝑣
(𝑟)

) 𝑛
𝑣=1 ,                    (22) 

𝑔, 𝑟 = 0, 𝑁 − 1,  𝑔 ≠ 𝑟. 

 

Definition 3. Let us determine the value 𝐼Ku sn
(gr)  (22), 

which we will refer to as the value of extracted 

information from a samples of size n regarding 

distinction between hypotheses 𝐻𝑟, 𝐻𝑔 when using 

polynomial DR (14) of degree s.  

 

Property 2. For the coefficients determined from the 

system of equations (17), the value of the quality 

criterion 𝐾𝑢2(𝐸, 𝐺) (15) is inversely proportional to the 

amount of extracted information from sample values of 

size n concerning the distinction between hypotheses 𝐻𝑟, 

𝐻𝑔 and expressed as follows: 

𝐼 sn
(gr) =

1

𝐾𝑢(𝐸,𝐺)(𝑚𝑟) = ∑ ∑ 𝑘𝑖𝑣
(𝑔𝑟)𝑛

𝑣=1
𝑠
𝑖=1 (𝑚𝑖𝑣

(𝑔)
− 𝑚𝑖𝑣

(𝑟)
),  

𝑔, 𝑟 = 0, 𝑁 − 1,  𝑔 ≠ 𝑟.  (23) 

 

3 Results 

Let us carry out a synthesis of algorithms for RZ-

signals distinction in non-Gaussian noise for the degree 

of the polynomial DR (14) S=1,2 on the basis of the 

proposed approach and the MMQC (15). 

The initial moments up to the 4th order for the signal 

𝜉0(𝑡) when implementing the hypothesis 𝐻0 are as 

follows: 

𝑚1
(0)

= 0,  𝑚2
(0)

= 𝜒2,  

𝑚3
(0)

= 𝛾3𝜒2

3

2,  𝑚4
(0)

= (3 + 𝛾4)𝜒2
2, 

where 𝛾3, 𝛾4– coefficients of the third (kewness) and 

fourth (kurtosis) orders.  

The initial moments up to the 4th order for the signal 

𝜉1(𝑡) when implementing the hypothesis 𝐻1 are as 

follows: 

𝑚1
(1)

= 𝑎1, 𝑚2
(1)

= 𝑎1
2 + 𝜒2, 

𝑚3
(1)

= 𝑎1
3 + 3𝑎1𝜒2 + 𝛾3𝜒2

3

2,  

𝑚4
(1)

= 𝑎1
4 + 6𝑎1

2𝜒2 + 4𝑎1𝛾3𝜒2

3
2 + 3𝜒2

2 + 𝛾4𝜒2
2. 

 



376           Volodymyr Palahin, Oleksandr Zorin: Models and methods for RZ-signals distinction in non-Gaussian noise … 

The initial moments up to the 4th order for the signal 

𝜉2(𝑡) when implementing the hypothesis 𝐻2 are as 

follows: 

𝑚1
(2)

= −𝑎2, 𝑚2
(2)

= 𝑎2
2 + 𝜒2, 

𝑚3
(2)

= −𝑎2
3 − 3𝑎2𝜒2 + 𝛾3𝜒2

3
2, 

𝑚4
(2)

= 𝑎2
4 + 6𝑎2

2𝜒2 − 4𝑎2𝛾3𝜒2

3
2 + 3𝜒2

2 + 𝛾4𝜒2
2. 

Let us formulate the expressions for the centered 

correlations based on the provided equations  

𝐹(𝑘,𝑗)
(𝑖)

= 𝑚(𝑘+𝑗)
(𝑖)

− 𝑚𝑘
(𝑖)

𝑚𝑗
(𝑖)

, 𝑖 = 0,2. 

Then, for hypotheses 𝐻0, 𝐻1, 𝐻2 we will obtain the 

following expressions: 

𝐹(1,1)
(0)

= 𝜒2, 
( ) ( )1,2 2,1

(0) (0) 3/2
2 3,F F  = =  

 𝐹(2,2)
(0)

= 2𝜒2
2 + 𝛾4𝜒2

2, 

( )1,1

(1)
2F = 𝐹(1,2)

(1)
= 𝐹(2,1)

(1)
= 2√𝑝1𝜒2

3

2 + 𝛾3𝜒2

3

2, 𝐹(2,2)
(1)

=

2𝜒2
2 + 4𝑝1𝜒2

2 + 4√𝑝1𝛾3𝜒2
2 + 𝛾4𝜒2

2, 

( )1,1

(2)
2 ,F = 𝐹(1,2)

(2)
= 𝐹(2,1)

(2)
= −2√𝑝2𝜒2

3

2 + 𝛾3𝜒2

3

2, 

𝐹(2,2)
(2)

= 2𝜒2
2 + 4𝑝2𝜒2

2 − 4√𝑝2𝛾3𝜒2
2 + 𝛾4𝜒2

2, 

where 𝑝𝑖 =
𝑎𝑖

2

𝜒2
, 𝑖 = 1,2 – the ratio of the power of the 

useful signal 𝑎𝑖 to the variance 𝜒2  of the additive non-

Gaussian noise (SNR). 

Let us give a synthesis of linear DR (14) rules at the 

degree of the polynomial S=1, which are as follows: 

𝛬(𝑿)1𝑛
(𝑖0)

= 𝑘1
(𝑖0) ∑ 𝑥𝑣 + 𝑘0

(𝑖0)

𝐻0

>
<
𝐻𝑖

𝑛
𝑣=1 0, 𝑖 = 1,2 (24) 

  𝛬(𝑿)1𝑛
(21)

= 𝑘1
(21) ∑ 𝑥𝑣 + 𝑘0

(21)

𝐻1

>
<
𝐻2

𝑛
𝑣=1 0,   (25) 

The general structure of the DR (14) for multiple 

statistical hypothesis testing will be presented as a 

system of equations for testing hypotheses (Table 1). 

 

Table 1. Systems of equations for testing hypotheses 

𝐻1 𝐻2 𝐻0 

{
𝛬(𝑿)(10) > 0

𝛬(𝑿)(21) < 0
 {

𝛬(𝑿)(20) > 0

𝛬(𝑿)(21) > 0
 {

𝛬(𝑿)(10) < 0

𝛬(𝑿)(20) < 0
 

Here, 𝛬(𝑿)(10), 𝛬(𝑿)(20) are decision functions for 

hypotheses testing 𝐻1 and 𝐻2 against 𝐻0, respectively, 

𝛬(𝑿)(21) is the decision function for hypotheses testing 

𝐻2 and 𝐻1. 

The unknown coefficients 𝑘1
(і0)

 and 𝑘1
(21)

  for DR 

(24) are found from the solution of the system of 

Eqns. (17), where the thresholds 𝑘0
(21)

 and 𝑘0
(і0)

 are 

found according to (16): 

𝑘0
(𝑖0)

= −𝑛
𝑝𝑖

4
, 𝑘0

(21)
=

𝑛

4
(𝑝1 − 𝑝2), 𝑘1

(10)
= √𝑝1

2√𝜒2
, 

( ) 220

1
2

;
2

p
k


= − 𝑘1

(21)
= − √𝑝1+√𝑝2

2√𝜒2
, 𝐸0

(𝑖0)
= 0.  

The mean and variance of DR (24, 25) will take the 

form from Eqns. (18-21): 

𝐸1
(𝑖0)

=
𝑛𝑝𝑖

2
, 𝐸1

(21)
= −

1

2
𝑛√𝑝1(√𝑝1 + √𝑝2),  

𝐸2
(21)

=
1

2
𝑛(√𝑝1√𝑝1 + √𝑝2), 

𝐺0
(𝑖0)

= 𝐺1
(𝑖0)

= 𝐺2
(𝑖0)

= 𝑛𝑝𝑖/4 ,  

 𝐺1
(21)

= 𝐺2
(21)

=
𝑛

4
(√𝑝1 + √𝑝2)

2
, 𝑖 = 1,2. 

To evaluate the effectiveness of the synthesized 

linear algorithms, we will use the expression (22) or (23) 

that characterizes the value of extracted information 

from a samples of size n regarding distinction between 

hypotheses 𝐻𝑟, 𝐻𝑔  and will take the form 

𝐼1𝑛 = 𝐼𝑠𝑛
(10)

+ 𝐼𝑠𝑛
(20)

+ 𝐼𝑠𝑛
(21)

=  (26) 

𝑛(𝑝1 + √𝑝1√𝑝2 + 𝑝2). 

The obtained set of systems of equations (Table 1) for 

the synthesis of decision rules are linear and align with 

well-known results for Gaussian models of random 

processes. However, these synthesized decision rules do 

not account for the parameters of the non-Gaussian 

distribution of the studied random processes. This 

limitation arises because only the initial moments of the 

first and second orders, which describe the mean and 

variance of the investigated process, were used to 

characterize the random variables. To incorporate 

additional parameters such as asymmetry and kurtosis of 

the random process, it is essential to utilize higher-order 

statistics (HOS). Therefore, increasing the degree of the 

polynomial decision rule to S=2 (12) allows for the 

incorporation of initial moments of the third and fourth 

orders. 

According to expression (14), let's derive a nonlinear 

DR with a polynomial degree S=2. In the general case, 

for uniformly distributed sample values, it takes the 

form: 
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𝛬(𝑿)2𝑛
(𝑖0)

= 𝑘1
(𝑖0) ∑ 𝑥𝑣 + 𝑘2

(𝑖0) ∑ 𝑥𝑣
2𝑛

𝑣=1 + 𝑘0
(𝑖0)

𝐻𝑖

>
<
𝐻0

𝑛
𝑣=1 0, (27) 

𝛬(𝑿)2𝑛
(21)

= 𝑘1
(21) ∑ 𝑥𝑣 + 𝑘2

(21) ∑ 𝑥𝑣
2𝑛

𝑣=1 + 𝑘0
(21)

𝐻2

>
<
𝐻1

𝑛
𝑣=1 0, 

where i=1,2. 

The unknown coefficients for DR (27) are 

determined by solving the system of equations (16), (17) 

and look like: 

𝑘0
(10)

=
2√𝑝1𝛾3−𝑝1(2+𝑝1+𝛾4)

4(2+𝑝1−𝛾3
2+𝛾4)

;  

𝑘0
(20)

= −
2√𝑝2𝛾3 + 𝑝2(2 + 𝑝2 + 𝛾4)

4(2 + 𝑝2 − 𝛾3
2 + 𝛾4)

; 

𝑘0
(21)

=
(√𝑝1 + √𝑝2)

2
(2 + (√𝑝1 + √𝑝2)

2
− 2(√𝑝1 + √𝑝2)𝛾3 + 𝛾4)

4 (2 + (√𝑝1 + √𝑝2)
2

− 𝛾3
2 + 𝛾4)

; 

𝑘1
(10)

=
√𝑝1(2 + 𝑝1 + √𝑝1𝛾3 + 𝛾4)

2√𝜒2(2 + 𝑝1 − 𝛾3
2 + 𝛾4)

; 

𝑘1
(20)

= − √𝑝2(2+𝑝2−√𝑝2𝛾3+𝛾4)+𝑝2𝛾3

2√𝜒2(2+𝑝2−𝛾3
2+𝛾4)

;  

𝑘2
(10)

= − √𝑝1𝛾3

2𝜒2(2+𝑝1−𝛾3
2+𝛾4)

;  

𝑘2
(20)

= √𝑝2𝛾3

2𝜒2(2+𝑝2−𝛾3
2+𝛾4)

;  

𝑘1
(21)

=
(√𝑝1+√𝑝2)(2+(√𝑝1+√𝑝2)2+(√𝑝1−√𝑝2)𝛾3+𝛾4)

2√𝜒2(2+(√𝑝1+√𝑝2)2−𝛾3
2+𝛾4)

; 

𝑘2
(21)

=
(√𝑝1+√𝑝2)𝛾3

2𝜒2(2+((√𝑝1+√𝑝2)2−𝛾3
2+𝛾4))

. 

The mean and variances of DR (27) are defined 

according to expressions (18-21). 

For evaluating the effectiveness of the synthesized 

non-linear DR (27) we will use expression (22) or (23). 

The maximum value (22, 23) will correspond to the 

minimum value of MMQC (15), which leads to the 

minimum values of the upper bound of the probabilities 

of errors of the first and second kind of DR (27): 

𝐼2𝑛 = 𝑛{(𝑝1 + √𝑝1√𝑝2 + 𝑝2) +
1

2
𝛾3 (

𝑝1

2+𝑝1−𝛾3
2+𝛾4

+

(√𝑝1+√𝑝2)2

2+(√𝑝1+√𝑝2)2−𝛾3
2+𝛾4

+
𝑝2

2+𝑝2−𝛾3
2+𝛾4

)}.    (28) 

The synthesized DR (24, 25) with a polynomial 

degree of S=1 represents a system of equations for 

testing hypotheses 𝐻10, 𝐻20, 𝐻21, which do not 

incorporate the non-Gaussian distribution characteristics 

of random processes. When the degree of the polynomial 

DR is increased to S=2 (27), it involves the use of initial 

moments of the 3rd and 4th orders. This expansion 

allows for the consideration of non-Gaussian parameters 

of random processes, specifically the coefficients of 

skewness 𝛾3 and kurtosis , 𝛾4. 

 

4 Experiments 

To evaluate the effectiveness of the obtained linear 

(𝑆 = 1) (24, 25) and non-linear (𝑆 = 2) (27) DR, we will 

use the modified criterion (15), which characterizes the 

sum of the probabilities of errors of the first and second 

kind of the DR. We also note that the inverse value of 

this criterion 𝐾𝑢2(𝐸, 𝐺)(𝑔𝑟) is the extracted information 

value 𝐼 sn
(gr) (28) from a samples for distinction between 

hypotheses 𝐻𝑟, 𝐻𝑔. 

The ratio of the extracted information value 𝐼1𝑛 (26) 

on the distinction among three hypotheses for the 

Gaussian noise model (DR S=1) to 𝐼2𝑛 (28) for the non-

Gaussian asymmetric-excess noise model (DR S=2) 

from the skewness coefficient 𝛾3 is shown in Fig. 1. 

Research results show that linear DR (24, 25) for  
𝑆 = 1 is equal to well-known results obtained from the 

probabilistic quality criterion by assuming the Gaussian 

noise model. In this case, only the first two initial 

moments are used to characterize the random variables, 

which describe the mean and variance of the random 

variables. The extracted information ratio 𝐼1𝑛/𝐼2𝑛 from 

samples about distinction hypotheses is equal to 1 for 

Gaussian model noise when the skewness coefficient 

is 𝛾3 = 0. Taking into account the asymmetry of random 

samples (𝛾3 ≠ 0), the extracted information 𝐼2𝑛   for 

nonlinear DR (𝑆 = 2) are more than 𝐼1𝑛 for the well-

known linear DR (24, 25). This tendency characterizes 

the lower values of MMQC (15) and accordingly 

probability the first and the second kind of errors of 

nonlinear DR (27) than linear DR (24, 25). For example 

(Fig. 1a), the probability errors value of nonlinear DR is 

decreased approximately twice for 𝛾3 = 0.8 and  
𝛾4 = −1 (at 𝑆𝑁𝑅 р1 = р2 = 0.1, curve − 3) compa-

red to linear DR. A similar positive effect in increasing 

the effectiveness of nonlinear processing of sample 

values is observed for other parameters of non-Gaussian 

noise, as demonstrated in Figs. 1b-1d. It should also be 

noted that the efficiency of signal processing improves 

with the increasing of the DR polynomial degree S.  
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a) 𝛾4 = −1; 1)р1 = р2 = 10; 2) р1 = р2 = 0.5; 

  3)р1 = р2 = 0.1. 

b) 𝛾4 = 1;   1)р1 = р2 = 10; 2) р1 = р2 = 0.5;  

3)р1 = р2 = 0.1. 

  

с)  𝛾4 = 5; 1)р1 = р2 = 10; 2) р1 = р2 = 0.5;  

3)р1 = р2 = 0.1. 

d)  𝛾4 = 10; 1)р1 = р2 = 10; 2) р1 = р2 = 0.5; 

 3)р1 = р2 = 0.1. 

Fig. 1. Comparison of the extracted information ratio 𝐼1𝑛/𝐼2𝑛 from samples about distinction hypotheses from the 

skewness coefficient 3  using polynomial DR of order 𝑆 = 1,2 , n=100. 

Simulation of the RZ-signal distinction in non-

Gaussian noise was carried out. The simulation was 

implemented in the Matlab-Simulink environment, the 

results of which are shown in Fig. 2. The result of linear 

(a - S=1) and non-linear (b - S=2) signal processing DR 

for hypotheses testing 𝐻1 and 𝐻2 against 𝐻0 is shown. 

Linear processing (a) is characterized by more chaotic 

DR emissions, which will lead to the appearance of 

errors of the first and second kind. Non-linear processing 

is characterized by less chaotic DR emissions, which 

improves the accuracy of the RZ-signal distinction in 

non-Gaussian. 

The result of the noisy RZ-signals decoding is 

presented in Fig. 3. The simulation was carried out with 

different non-Gaussian noise parameters, namely with 

different skewness and kurtosis coefficients and SNR. 

Figure 3 shows a useful RZ-signals (a), a noisy  

RZ-signals in non-Gaussain Rayleigh noise (b) - 𝛾3 =
0.631,  𝛾4 = 0.245, the results of linear (c, e)  and non-

linear (d, f) signal processing. As can be seen from the 

results of the simulation, the number of RZ-signal 

distinction errors decreases with nonlinear processing of 

sample values (S=2 - d, f) compared to the processing 

results for Gaussian models of random processes (S=1  

- c, e). It can be seen from the obtained oscillograms that 

taking into account the non-Gaussian characteristic of 

random processes in the form of the coefficient of 

asymmetry and kurtosis allows us to increase the 

efficiency of RZ-signal distinction in non-Gaussian 

noise by factors of 5 (c, d) and 3.5 (e, f) - in Fig. 3. This 

improvement in efficiency corresponds to the results 

obtained for theoretical studies (Fig. 1)  
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a) b) 

Fig. 2. Simulation RZ signals distinction between 𝐻1, 𝐻2 and 𝐻0 hypotheses  in non-Gaussian noise using linear 

𝑆 = 1 (a) and nonlinear 𝑆 = 2 (b) DR for р1 = р2 = 0.1, 𝛾3 = 3, 𝛾4 = 10, n=100.  

 

 

Fig. 3. Simulation RZ signals distinction  in non-Gaussian noise: a) - useful RZ-signals; b) - additive mixture RZ 

signals and non-Gaussian asymmetric-excess noise; c), e) - linear signal processing DR (S=1); d), f) – non-linear 

signal processing DR (S=2), where n=100, р1 = р2 = 0.1, 𝛾4 = −1, 𝛾3 = 1 (c, d); р1 = р2 = 0.2, 𝛾3 =
0.631,  𝛾4 = 0.245  (e, f). 
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a) b) 

c) d) 

Fig. 4. Simulation of the ROC curve of a polynomial signal detector in non-Gaussian noise 

 

Figure 4 shows the results of the simulation of the 

ROC curve (Receiver Operating Characteristic curve) 

for the polynomial signal detector in non-Gaussian 

noise. 

It is shown that for the Gaussian noise model, when 

the coefficients of skewness (𝛾3) and kurtosis (𝛾4) are 

equal to zero, the characteristics of the linear (s=1) and 

nonlinear (s=2) polynomial DR are the same (Fig. 4 - a). 

It is important to note that the linear DR coincides with 

the classical DR, which is derived from the likelihood of 

the assumed Gaussian noise model. As the skewness 

coefficient increases (discrete values for 𝛾3 = 0.5, 1.0, 

1.2 for n=100 are shown in Fig. 4b, c, d), the curve 

deviates to the upper left corner. Such a deviation of the 

curve indicates an increase in the quality of nonlinear 

signal processing (s=2) compared to the linear (s=1) 

processing under the assumption of non-Gaussian noise 

models 

 

5 Discussions 

Signal processing in noise is a significant statistical 

challenge for many practical applications. The 

foundation for addressing these problems lies in using 

the likelihood ratio, which involves the probability 

densities of random processes. However, applying this 

approach to non-Gaussian models of random processes 

presents practical difficulties related to determining the 

type of distribution density, its parameters, and the 

synthesis and analysis of algorithms. 

The paper suggests an alternative approach to 

describing random processes. This approach is based on 

using moments and cumulants, an infinite sequence of 

which will accurately approximate the proposed 

description of random variables to a complete 

probabilistic description. However, to develop practical 

algorithms for signal processing in non-Gaussian noise, 

scientific research is required. This research must focus 

on the synthesis of decision rules and new moment-

based quality criterion (Modified Moment Quality 

Criterion of Probability Upper Bound Errors for 

Multiple Statistical Hypothesis Testing) to determine 

optimal algorithms for signal distinction in non-

Gaussian noise. 

The use of polynomial decision rules is proposed, 

with optimal coefficients determined by the suggested 

criterion. Additionally, an adapted criterion for multiple 

hypothesis testing has been proposed, enabling the 

synthesis of polynomial decision rules for RZ signal 

distinction in non-Gaussian noise. 

Based on the proposed approach, linear and nonlinear 

decision rules were derived for various polynomial 

orders. It is important to note that linear decision rules 

do not account for the non-Gaussian distribution of 
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random variables processed by the proposed algorithm. 

This is because only the first two moments, representing 

the mean and variance of the random variables, are used 

to describe them. However, these linear decision rules 

exactly match those derived from the likelihood ratio for 

a Gaussian model of random variables. 

Nonlinear processing of sample values and 

consideration of higher-order statistics of non-Gaussian 

processes lead to enhanced performance in RZ signal 

distinction systems compared to conventional 

approaches for Gaussian processes. In this case, four 

initial moments are used to describe random variables, 

which additionally characterize the properties of 

skewness and kurtosis of random processes. With such a 

description of random variables, the process can be non-

Gaussian. 

Studies have shown that this new approach to describing 

random variables and synthesizing decision rules can 

increase the accuracy of signal processing compared to 

the well-known results for widely used Gaussian models 

of random processes. The use of the proposed method 

and synthesized algorithms increases the noise immunity 

of the system for transmitting and receiving bipolar 

discrete RZ signals in information and measurement 

systems, as confirmed by simulation results in the 

SIMULINK environment. 

Based on the DR (14) the structure generalized block 

diagram of polynomial RZ-signals distinction at the 

degree of DR 𝑠 = 1,  6 is shown in Fig. 5. This structure 

is designed for statistical processing of input discrete 

independent values 𝐗 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Such a struc-

ture is not difficult to implement. It includes blocks such 

as sample value accumulators, multipliers, a threshold 

device and can be implemented on a modern element 

base, for example on an FPGA. The optimal DR 

coefficients 𝑘𝑖
(𝑔𝑟)

, 𝑘0
(𝑔𝑟)

, which minimize the sum of 

error probabilities in accordance with the MMQC (15) 

for multiple hypothesis testing, are derived from solving 

the system of equations (17). 
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Fig. 5. Generalized block diagram of polynomial  

RZ-signals distinction signal distinction at the degree 

of DR 𝑠 = 1,  6. 

6 Conclusion 

After analyzing the challenge of enhancing signal 

processing methods in non-Gaussian noise, a 

methodology for developing mathematical modeling 

techniques for signal detection and distinction was 

chosen and justified. This methodology considers the 

unique characteristics of random signals and involves 

utilizing a moment-cumulant representation of random 

processes along with polynomial DR. The coefficients 

of these decision rules are optimized to minimize the 

sum error probabilities, as dictated by the MMQC. 

Methods for detecting and distinguishing signals in 

non-Gaussian noise have been devised. The synthesized 

polynomial signal processing algorithms demonstrate 

superior performance when contrasted with established 

outcomes for Gaussian noise models. This approach 

more accurately characterizes the traits of non-Gaussian 

stochastic processes by incorporating moments and 

cumulants of the third order and beyond. Considering 

higher-order statistics, such as third and higher order 

moments and cumulants like skewness and kurtosis 

coefficients, for additive non-Gaussian noise compo-

nents can enhance the effectiveness of nonlinear signal 

processing. Such an increase in efficiency can exceed 

twofold, depending on the noise parameters. It is shown 

that the efficiency of the proposed approach is much 

higher for small SNR values, for example less than 1. 
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