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OUTPUT STABLE MODEL PREDICTIVE
CONTROL DESIGN WITH INPUT CONSTRAINTS

Vojtech Veselý
∗

The paper addresses the problem to design a quadratic stable output/state feedback model predictive control for linear
systems with input constraints. In the proposed design technique the model predictive control is designed for N2 step ahead
prediction using the Lyapunov function approach with the cost function guaranteeing input constraints. Output gain matrix
calculation is realized off line and through dynamic behavior with respect to quadratic stability of closed-loop system only
modification of output gain matrix is realized to guarantee input constraints. Two examples are given to demonstrate the
effectiveness of the proposed methods.
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1 INTRODUCTION

Predictive control algorithms compute the control
variable minimizing a cost function considering expected
future errors in a given prediction horizon. In each sam-
pling time the series of the control signals is calculated,
but according to receding horizon strategy only the first
value is applied as a manipulated variable, and in the
next sampling point the procedure is repeated. Predic-
tive algorithms provide good performance especially in
case of a big dead time and if the future reference tra-
jectory is known. Nowadays in industrial control, besides
PID control, predictive control gains more and more ap-
plications. The main criticism related to predictive con-
trol is that because of the finite prediction horizon the
algorithm in its original formulation does not guarantee
stability. Different extensions as e.g. including punish-
ing of the end point deviation of the state variables in
the cost function, or considering bigger weighting factors
for punishing the output deviation at the last points of
the prediction horizon would ensure stable performance.
There are some approaches to guarantee the stability of
closed-loop systems. The first type of approaches has orig-
inated by Rawlings and Muske [14] where the central idea
is that if the minimization problem is feasible, the cost
function can be interpreted as a monotonically decreasing
Ljapunov function and asymptotic stability is therefore
guaranteed. The main idea of the next approach, Clarke
and Mohtadi [4], Clarke and Scattolini [5], Dermicioglu
and Clarke [6], is to impose state terminal constraints to
force the predicted output to exactly follow the reference
during a sufficiently large horizon. Stability results for
constrained MPC have been obtained by Rossiter and
Kouvaritakis [17] who found that for any reference w(t)
which assumes a constant value after a number of sam-
pling periods, if the constrained MPC is feasible for suffi-
ciently large values of the horizon, the closed-loop will be

stable. The reader can consult other approaches in Veselý
and Bars [18], Rossiter [16], Camacho and Bordons [3],
Maciejowski [12], Haber et al [9], Mayne et al [13]. Here
closed-loop system stability guarantees are given creating
a Lyapunov function for the design of a state or output
feedback controller with input constraints.

The paper is organized as follows. The next section
gives a problem formulation and preliminary about a pre-
dictive output/state model. In Section 3, the approach of
output feedback predictive controller design using linear
matrix inequality is presented. In Section 4, the input
constraints are formulated to LMI feasible solution. Two
examples in Section 5 illustrate the effectiveness of the
proposed method. Finally, some conclusions are given.

2 PRELIMINARIES AND

PROBLEM FORMULATION

A time invariant linear discrete-time system is given
by

x(t + 1) = Ax(t) + Bu(t) ,

y(t) = Cx(t)
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are state, control
and output variables of the system, respectively; A, B, C
are known matrices of corresponding dimensions.

The state of the model for instant t + N2 can be
computed recursively (see [3]) applying (1), the result is

x(t + N2) = AN2x(t) +

N2−1
∑

i=0

AN2−i−1Bu(t + i) (2)

and the corresponding output is

y(t + N2) = Cx(t + N2) . (3)
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Consider a set of N2 steps ahead predictions, one obtains

z(t + 1) = Afz(t) + Bfv(t) ,

yf (t) = Cfz(t)
(4)

where

z(t)⊤ = [ x(t)⊤ x(t + 1)⊤ . . . x(t + N2 − 1)⊤ ] ,

v(t)⊤ = [ u(t)⊤ u(t + 1)⊤ . . . u(t + N2 − 1)⊤ ] ,

yf (t)⊤ = [ y(t)⊤ y(t + 1)⊤ . . . y(t + N2 − 1)⊤ ] ,

Af =







A 0 . . . 0
A2 0 . . . 0
. . . . . . . . . . . . . . .
AN2 0 . . . 0






∈ R(nN2)×(nN2),

Bf =







B 0 . . . 0
AB B . . . 0

. . . . . . . . . . . . . . . . . . . . .
AN2−1B . . . . . . . B






∈ R(nN2)×(mN2),

Cf =







C 0 . . . 0
0 C . . . 0
. . . . . . . . . . . . . .
0 0 . . . C






∈ R(lN2)×(nN2).

If the state x(t) for state feedback is not accessible,
Kalman filter is required.

Let the cost function to be minimized be in the form
[10]

J =

∞
∑

t=t0

J(t) (5)

where

J(t) = min
v(t)

{

[yf (t + 1) − wf (t + 1)]⊤Q[yf (t + 1)

− wf (t + 1)] + v(t)⊤Rv(t)
}

and

wf (t + 1)⊤ = [w(t + 1)⊤ . . . w(t + N2)
⊤ ]

gives the predicted setpoints. Q, R are positive definite
matrices.

The problem studied in this part of the paper is to
design a model predictive controller with output (state)
feedback in the form

v(t) = F (yf (t) − wf (t)) (6)

where F is the output feedback gain matrix which guar-
antees stability of the closed-loop system and minimum
value of the cost function J(t) subject to (4).

3 MODEL PREDICTIVE

CONTROLLER DESIGN

Let us consider a set of yf(t + j), j ∈ 〈1, N2〉 ahead
output predictions affecting the cost function (5) and the

vector of v(t + j), j ∈ 〈0, Nu〉 future control in the
control horizon. A new system and input matrices are
formed by the corresponding submatrices of Af , Bf ∈

R(nN2)×(mNu) respectively. For more detail see [3]. We
will proceed without changing the denotation.

v(t) = F (yf (t) − wf (t)) = F (Cfz(t) − wf (t)) (7)

and the closed-loop system is given by

z(t + 1) = (Af + BfFCf )z(t) − BfFwf (t)

= Acz(t) − BfFwf (t) . (8)

Because the vector wf (t) is independent of vector z(t)
and if vector wf (t) belongs to the class of L2 , the stabil-
ity of the closed-loop system (8) is determined by matrix
Ac . The origin of the state vector z(t) has to be recalcu-
lated to a new steady state given by the set point vector
wf (t). Due to Lyapunov function approach and because
of the stability of the closed-loop system determined by
the matrix Ac we assume that w(t) = w(t+1) = · · · = 0.
The closed-loop system will be stable if and only if the
first difference of Lyapunov function V (t) = z(t)⊤Pz(t),

P = P⊤ > 0 on the solution of (8) will be negative defi-
nite (semidefinite) that is

∆V (t) = V (t + 1) − V (t) = z(t)⊤(A⊤

c PAc − P )z(t) ≤ 0 ,

t = 1, 2, . . . (9)

Substituting (7) and (8) to cost function (5) one obtains

J(t) = min
F

z(t)⊤(A⊤

c C⊤

f QCfAc+

C⊤

f F⊤RFCf )z(t) ≥ 0 (10)

From (10) one can see that J(t) for t = 1, 2, . . . is a pos-
itive definite (semidefinite) function. Closed-loop system
(8) will be stable and cost function J(t) reaches minimal
value iff the following inequality holds (Krokavec and Fi-
lasova, 2008)

Be(t) = z⊤(t)[A⊤

c PAc − P+

A⊤

c C⊤

f QCfAc + C⊤

f F⊤RFCf ]z(t) ≤ 0 (11)

for t = 1, 2, . . . ie the matrix expression in (11) will be
negative definite (semidefinite). From (11) one can recast
the following bilinear matrix inequality (BMI)









−P A⊤
c A⊤

c C⊤

f Q C⊤

f F⊤R
∗ −P−1 0 0
∗ ∗ −Q 0
∗ ∗ ∗ −R









≤ 0 (12)

where ∗ denote the transpose of the corresponding sym-
metric part of the matrix. Using linearization approach
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with respect to P−1 (see [7]) the following inequality
holds

−P−1 ≤ Y −1
k (P − Yk)Y −1

k − Y −1
k = lin(−P−1) . (13)

Due to (13), (12) becomes LMI in the form









−P A⊤
c A⊤

c C⊤

f Q C⊤

f F⊤R
∗ lin(−P−1) 0 0
∗ ∗ −Q 0
∗ ∗ ∗ −R









≤ 0 (14)

where Yk, k = 1, 2, . . . in the iteration process Yk = P .
Because the linearization approach has been used for (12),
BMI conditions (12) “if and only if” reduces to “if” for
(14). If the LMI (14) is feasible with respect to matrices P
and F , the closed-loop system will be quadratically stable
with minimal value of the cost function. Note that using
(7) with matrix F one could calculate the input (control)
vector v(t) for Nu − 1 predicted control horizon from
N2 predicted output vector yf (t). As a receding horizon
strategy is used, only the first element of the control
vector u(t) is sent to the plant and all the computation
is repeated at the next sampling time. Let us rewrite (4)
as follows

z(t + 1) = Af z(t) + (B1 + B2)v(t) (15)

where Bf = B1 + B2 , B1 = [Bf1 01] , B2 = [02 Bf2]
and

Bf1 ∈ R(nN2)×m , 01 ∈ R(nN2)×(Nu−1)m

Bf2 ∈ R(nN2)×(Nu−1)m , 02 ∈ R(nN2)×m

and 0i , i = 1, 2 are zero matrices with corresponding
dimensions.

From (15) we get

(B1+B2)v(t) = Bf1u(t)+O1v(t+1)+02u(t)+Bf2v(t+1) .
(16)

Equation (16) implies: to guarantee the stability of the
closed-loop system for control variable u(t) instead of
matrix Bf in (14) one has to use the matrix of B1 .

We can conclude that if the following two LMIs

{in eq (14) with Bf} ≤ 0 ,

{eq (14) with B1} ≤ 0
(17)

are feasible with respect to P = P⊤ => 0 and matrix
F , the closed-loop system with control variables v(t) and
u(t) will be quadratically stable and the cost function will
have a minimal value. Note that only the first m rows
of matrix F are used for real plant control with control
input u(t). The above results can be summarized in the
following theorem.

Theorem 1. We are given a discrete linear-time invari-
ant system (1). Assume that control algorithm for model
predictive control is given by (6), where w(t + j) =
0 or constant, j = 1, 2, . . . , Nu − 1 . (For the case of
w(t + j) =cons the origin of state space of system (1)
has to be recalculated to achieve the steady state given
by constant set points). If the two LMIs (17) are feasible

with respect to P = P⊤ > 0 and a matrix F , then the
cost function (6) has minimal value and quadratic stabil-
ity of closed-loop system is guaranteed for two cases

• output feedback with control algorithm given by (6)
and

• output feedback for control variable u(t) = Fyf (t)
when only first m rows of matrix F are used.

4 MPC DESIGN FOR INPUT CONSTRAINTS

To design model predictive control (Adamy and Flem-
ming [1], Camacho and Bordons [3]) with any constraints
on input, state and output variables at each sampling
time, starting from the current state, an open-loop opti-
mal control problem is solved over the defined finite hori-
zon. The first element of the optimal control sequence is
applied to the plant. At the next time step, the compu-
tation is repeated. Thus, the implementation of the MPC
strategy requires a QP solver for the on-line optimization
which still requires significant on-line computational ef-
fort, which limits MPC applicability. In this paper we pro-
pose the off-line calculation of two control gain matrices
and using analogy to SVSS approach, Adamy and Flem-
ming, 2004 we significantly reduce the computational ef-
fort for MPC suboptimal control with input constraints.

Consider the system (4) where the control v(t) is con-
strained to evolve in the following set

Γ = {v ∈ RmN2 : |vi(t)| ≤ Ui , i = 1, . . .mN2} . (18)

The aim of this part of paper is to design the stabilizing
control output feedback law for system (4) in the form

v(t) = FCfz(t) (19)

which guarantees that for the initial state z0 ∈ Ω(P ) =

{z(t) : z(t)⊤Pz(t) ≤ θ} control v(t) belongs to the set

(18) for all t ≥ 0, where P = P⊤ > 0 is positive definite
matrix, θ is positive real parameter which determines the
size of Ω(P ). Furthermore, Ω(P ) should be such that
all z(t) ∈ Ω(P ) provide v(t) satisfying the relation (18),
restricting the values of the control parameters. Moreover,
the following ellipsoidal Ljapunov function level set

Ω(P ) = {z(t) ∈ RnN2 : z(t)⊤Pz(t) ≤ θ} (20)

can be proven to be a robust positively invariant region
with respect to motion of the closed-loop system in the
sense of the following definition, Rohal-Ilkiv [15], Ayd and
et al [2].
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Fig. 1. Dynamic behavior of unconstrained controlled system Fig. 2. Dynamic behavior of constrained controlled system

Fig. 3. Dynamic behavior of controlled system for unconstrained
case

Fig. 4. Dynamic behavior of controlled system for constrained case

Definition. A subset S ∈ R(nN2) is said to be positively
invariant with respect to motion of system (4) with con-
trol algorithm (7) if for every initial state z(0) inside S
the trajectory z(t) remains in S for all t ≥ 0.

Consider that vector Fi denotes the i -th row of matrix
F and define

L(F ) = {z(t) ∈ R(nN2) : |FiCfz(t)| ≤ Ui, } ,

i = 1, 2, . . . , mN2 .

The above set can be written as

L(F ) = {z(t) ∈ R(nN2) : |DiFCfz(t)| ≤ Ui, } ,

i = 1, 2, . . . , mN2 (21)

where Di ∈ R1×mN2 = {dij} , dij = 1, i = j ; dij =
0, i 6= j . The results are summarized in the following
theorem.

Theorem 2. The inclusion Ω(P ) ⊆ L(F ) is for output
feedback control equivalent to

[

P C⊤

f F⊤D⊤

i

DiFCf λi

]

≥ 0 , i = 1, 2, . . . , mN2 (22)

where λi ∈
〈

0,
U2

i

θ

〉

.

P r o o f . To prove the inclusion Ω(P ) ⊆ L(F ) is
equivalent to (22) we use S− procedure in following way.
Rewrite (20) and (21) in the following form

p(z) = z⊤(t)PZ(t) − θ ≤ 0 ,

gi(z) = z⊤(t)C⊤

f F⊤D⊤

i DiFCf z(t) − U2
i ≤ 0 .

According to S− procedure there exists a positive scalar
λi such that

gi(z) − λip(z) ≤ 0

or equivalently

z(t)⊤(C⊤

f F⊤D⊤

i DiFCf −λiP )z(t)−U2
i +λiθ ≤ 0 . (23)

Taking any scalar ̺ 6= 0 and multiplying (23) from left
and right side we obtain

[

C⊤

f F⊤D⊤
i DiFCf − λiP 0

0 −U2
i + λiθ

]

≤ 0 ,

i = 1, 2, . . . , mN2 . (24)

The above diagonal matrix is equivalent to two inequali-
ties. Using Schur complement formula for the first one one
obtains the inequality (22) which proves the theorem.
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In order to check the value of θi for i -th input one
solves the optimization problem z(t)⊤Pz(t) → max sub-
ject to constraints (18), whose solution yields

θi =
U2

i

DiFCfP−1C⊤

f F⊤D⊤

i

.

In the design procedure it should be verified that when
parameter θ decreases the obtained robust positively in-
variant regions Ω(P ) are nested to region obtained for
θ + ǫ , ǫ > 0.

Assume that one calculates two output feedback gain
matrices F1 for unconstrained case and F2 for con-
strained one. Normally, closed-loop system with the gain
matrix F2 gives the dynamic behavior slower than one
obtain for F1 . Consider the resulting output feedback
gain matrix F in the form

F = γF1 + (1 − γ)F2, γ ∈ (0, 1) . (25)

For gain matrices Fi , i = 1, 2 one obtains two closed-loop
system in the form (8), Aci = Af + BfFiCf , i = 1, 2.
Consider the edge between within Ac1 and Ac2 , that is

Ac = αAc1 + (1 − α)Ac2, α ∈ 〈0, 1〉 . (26)

The following lemma gives the stability conditions for
matrix Ac (26).

Lemma 1. Consider the stable closed-loop matrices Aci ,
i = 1, 2 .

• If there exists a positive definite matrix Pq such that

A′

ciPq + PqAci ≤ 0 , i = 1, 2 (27)

then matrix Ac is quadratically stable.

• If there exist two positive definite matrices P1, P2 such
that they satisfy the stability conditions given by Gr-
man et al [8], the closed-loop system Ac is parameter
dependent quadratically stable (PDQS).

R e m a r k s .

• If the closed-loop matrices Aci, i = 1, 2 satisfy (27) the
scalar γ in (25) may be change with any rate without
violating the closed-loop stability.

• If the closed-loop matrices Aci , i = 1, 2 are only
PDQS, the scalar γ in (25) has to be constant but
may be unknown.

• The proposed control algorithm (25) is similar to Soft
Variable-Structure Control (SVSC) [1] but in our case,
when vi < Ui the feedback gain matrix F (25) gives
rather more quick dynamic behavior to the closed-loop
system then when vi approaches Ui . The algorithm
for calculation of γ (25) may be as follows

γ = min
i

Ui − |vi|

Ui

If accidentally some vi > Ui , γ = 0.

5 EXAMPLES

The first example has been borrowed from [3, p. 147].
The model corresponds to the longitudinal motion of a
Boeing 747 airplane. The multivariable process is con-
trolled using a predictive controller based on the output
model of the aircraft. Two of the usual command out-
puts that must be controlled are airspeed that is, velocity
with respect to air, and climb rate. Continuous model has
been converted to discrete time one with sampling time
of 0.1 s, the model turns to (1) where

A =







.9996 .0383 .0131 −.0322
−.0056 .9647 .7446 .0001
.002 −.0097 .9543 0
.0001 −.0005 .0978 1







B =







.0001 .1002
−.0615 .0183
−.1133 .0586
−.0057 .0029






, C =

[

1 0 0 0
0 −1 0 7.74

]

.

Note that matrix A is unstable. For the weighted matri-
ces Q = 10I , R = I , Nu = N2 = 6 the following results
are obtained

• Unconstrained case
Closed − loopmaxeig = 0.8371± 0.2873i .

• Constrained case with Ui = 1, θ = 1,
Closed − loopmaxeig = 0.7546± 0.3010i .

Closed-loop step responses of the above two cases are
given in Fig. 1 and Fig. 2. The closed-loop system (26) is
quadratically stable.

The second example serves as a benchmark. The model
of double integrator turns to (1) where

A =

[

1 0
1 1

]

, B =

[

1
0

]

, C = [ 0 1 ] .

For the case of N2 = 6, Nu = 6, Q = 5I , R = I for
unconstrained case the gain matrix to control variable
v(t) = F1yf (t) is as follows

F1 =














−0.0206 0.0097 −0.0081 −0.0177 −0.0241 −0.0293
−0.6432 0.0057 −0.0052 −0.0111 −0.0151 −0.0183

0.4136 −0.0038 0.0033 0.0072 0.0097 0.0118
0.1700 −0.0016 0.0014 0.0029 0.0040 0.0049
0.0582 −0.0005 0.0005 0.0010 0.0014 0.0017
0.0310 −0.0002 0.0003 0.0005 0.0007 0.0009















and for constrained case with Ui = 0.3, i = 1, 2, . . . , 6,
θ = 1

F2 =














0.0441 0.0600 −0.0111 −0.0476 −.0707 −.0881
−0.2271 0.0182 −0.0014 −0.0112 −0.0171 −0.0215

0.2389 −0.0163 0.0023 0.0119 0.0178 0.0222
0.0947 −0.0065 0.0009 0.0047 0.0071 0.0088
0.0407 −0.0028 0.0004 0.0020 0.0030 0.0038
0.0266 −0.0018 0.0003 0.0013 0.0020 0.0025















Closed-loop step responses for unconstrained and con-
strained cases are given in Fig. 3 and Fig. 4. The closed-
loop system (26) is quadratically stable.
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6 CONCLUSION

The paper addresses the problem of the design of
a state or output feedback model predictive controller
with input constraints for N2 step prediction. The ob-
tained control algorithm guarantees the closed-loop sys-
tem quadratic stability and optimal value of performance
function using Lyapunov function approach. Finally two
examples are given which show the effectiveness of the
proposed methods.
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Vojtech Veselý (Prof, Ing, DrSc) was born in 1940. Since

1964 he has worked at the Department of Automatic Con-

trol Systems at the Faculty of Electrical Engineering and

Information Technology, Slovak University of Technology in

Bratislava, where he has supervised 18 PhD students. Since

1986 he has been Full Professor. His research interests include

the areas of power system control, decentralized control of

large-scale systems, process control and optimization. He is

author and coauthor of more than 250 scientific papers.


