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De-noising of partial discharge ultrasonic signal of
insulation bar in large motor based on GMC-wavelet

Xuejun Chen1,∗ , Lin Ma2 , Lei Zhang3 , Jianhuang Zhuang4

In view of the bad operation environment of large motor, which often suffers from various strong noise interference, the
partial discharge ultrasonic signal is often annihilated, which makes it difficult to detect and analyse. A de-noising method
based on generalized minimax concavity (GMC) and wavelet for partial discharge (PD) ultrasonic signal is proposed. GMC
is used to enhance the sparsity of PD ultrasonic signal and eliminate the high-frequency noise signal at the same time.
Then the residual high-frequency sparse noise and low-frequency noise of the former are de-noised again combined with
wavelet. Finally, the signal is reconstructed to achieve the purpose of de-noising the original PD ultrasonic signal with noise.
Compared with ℓ1 -norm method, GMC method, wavelet method and ℓ1 -norm-wavelet method, the simulation results show
that based on time domain analysis, the de-noising effect of the proposed method is obviously better than the other four
methods. The SNR and MSE of the former are better than those of the latter. In addition, the insulation bar discharge
model of large motor is constructed to obtain the actual PD ultrasonic signal, which further verifies its effectiveness, and its
de-noising effect is also better than the four methods. This method can not only enhance the sparsity of the target signal
and improve the estimation accuracy, but also achieve the de-noising effect, while retaining the effective information of PD
ultrasonic signal characteristics. This method can provide new ideas for other types of PD signal de-noising, and lay the
foundation for later feature analysis.

K e y w o r d s: insulation, generalized minimax concave, partial discharge, ultrasonic, de-noising

1 Introduction

With the rapid development of power system, the
number of large electrical equipment is increasing, which
makes the maintenance of power equipment more and
more difficult. How to ensure the maintenance without
affecting the operation of power system or single machine
off grid, detection methods and fault diagnosis have be-
come the key technical problems.

Partial discharge (PD) detection is one of the impor-
tant means to supervise the insulation performance of
electrical equipment. Many scholars have proposed cur-
rent, ultrasonic, ultra-high frequency, optical detection
methods for PD detection and fault diagnosis [1]. Among
them, because of its propagation characteristics and au-
dio frequency characteristics, ultrasound is favored and
mature for PD detection and discharge source position-
ing in transformers, switch cabinets, etc , [2-3].

However, for large motor PD, current deteection method
is usually used. However, when the PD of large motor is
known to exceed the standard, the current method is
often unable to determine the specific part of the PD
source, so it is necessary to disassemble it, and even find
and confirm the source of PD for each insulated bar. It
will waste a lot of manpower, material and financial re-

sources to dismantle on site. With the help of ultrasonic
characteristics and positioning of PD, the position of PD
can be reduced initially, and even the purpose of position-
ing can be achieved. However, the operation environment
of large motor is usually bad, and it is easy to suffer from
various strong noise interference, and the attenuation is
large in the dielectric propagation, which is often buried
by strong noise, resulting in the difficulty of PD ultra-
sonic detection [4]. Therefore, it is urgent to de-noise the
detected PD Ultrasonic.

In signal noise processing, many methods have been
studied and applied. The traditional filtering method has
good filtering effect for stationary signal, but it fails in
non-stationary and non-linear signal, and even leads to
signal distortion. For this reason, many scholars have
proposed filtering methods such as wavelet, indepen-
dent component analysis, adaptive, singular value decom-
position, empirical mode decomposition, particles, and
sparseness [5-11].

On the basis of singular value decomposition, adap-
tive singular value decomposition (SVD) is proposed in
reference [12] to suppress the noise of PD. However, with
the decrease of signal-to-noise ratio, it becomes difficult
to determine the threshold and the de-noising effect be-
comes poor. In order to overcome these problems, one
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method intercepts the noisy PD signal through the short-

term data window, and uses singular value decomposition

to eliminate the noise data, which is better than wavelet

analysis and singular value decomposition, but the de-

noising effect of this short-term singular value decompo-

sition is affected by the length of sliding data window

[13].

Due to its adaptive decomposition characteristics, em-

pirical mode decomposition (EMD) has been applied to

nonlinear signal de-noising and achieved good de-noising

effect, but there are still many problems to be solved,

such as how to solve the modal aliasing and select the

de-noising modal components [14]. All kinds of wavelet

de-noising methods are also used in PD signal process-

ing, and vibration signals of rotating machines, and in

many cases, the effect is obviously better than other fil-

tering methods, [15-17]. However, the effect of wavelet

de-noising is often limited by wavelet function selection

and parameter determination [18-20].

Because the high-frequency part of the signal in nature

is mostly noise, Donoho et al. proposed to use sparsity to

eliminate the high-frequency part of the noise [21]. Se-

lesnick proposed a nonconvex regularization term, whose

sparsity is better than standard convexity. Group sparse

signal de-noising has achieved good results in signal-to-

noise ratio (SNR) and perceptual quality [22]. Sparse

method has become a research hotspot because of its ad-

vantages of reducing data dimension and wide range of

signal representation. It is widely used in image and sig-

nal de-noising, compression, recognition and other fields.

At the same time, it is also used in PD signal de-noising

[23-25].

In order to enhance the sparsity and estimation accu-

racy of the target, generalized minimax concavity (GMC)

is proposed to induce nonconvex penalty function by spar-

sity, which avoids the underestimation of -norm regular-

ization [26]. This method is quickly applied to the de-

noising of mechanical fault diagnosis signal, and the effect

is better than that based on -norm and other methods

[27]. Goswami manifested the minimization of the ℓ1 -

error objective function by using a hybrid optimization

technique consisting of the particle swarm and simulated

annealing optimization algorithm. But it is only used for

design of a differentiator in the digital domain [28]. How-

ever, in the application of GMC to ECG de-noising, the

SNR and root mean square error (RMSE) based on -norm

have been significantly improved [29].

The PD ultrasonic signal of a large motor with noise is

a typical non-stationary mixed signal. In this paper, a de-

noising method based on GMC-wavelet is proposed. GMC

is used to de-noise the PD ultrasonic signal sparsely, and

then wavelet is used to de-noise the remaining part of the

sparse noise. Finally, signal reconstruction is carried out

to achieve the purpose of de-noising the original noisy PD

ultrasonic signal.

2 De-noising method

2.1 Sparse model and optimal solution

Assume that the y ∈ RM model of the observed noisy
signal is

y = Ax+ n. (1)

Among them, x ∈ RN is the original signal to be
extracted, A ∈ RM×N is a known linear operator, and
n ∈ RM is Gaussian white noise. To obtain the original
signal x , the sparse reconstruction algorithm can be used
to solve (1), so as to achieve the purpose of de-noising.

The convex optimization method based on ℓ1 -norm
is commonly used in sparse reconstruction. The method
is to minimize the regularized linear least squares loss
function [26], namely

min
1

2
‖y −Ax‖22 + λϕ(x). (2)

In (2), λ is a regularization parameter, and ϕ is a
regularizer. In this case, the ℓ1 -norm is usually used as a
regularizer because it reduces the sparsity most effectively
in the convex regularizer.

When the penalty term is ℓ1 -norm, the iterative soft
threshold algorithm can be used to solve (2). The iterative
equation is

xi+1 = fλµ(x
i − uAHy −Axi), (3)

where fλµ is the soft threshold function

fλµ(x) =

{

sign(x)(x − λµ), if |x| ≥ λµ

0, if |x| < λµ
. (4)

Among them, µ is the control convergence parameter,

that is 0 < µ < ‖A‖−2
2 , sign is the signum function.

GMC can be regarded as a multivariate generalization
of the minimax-concave (MC) penalty function. It uses
the Huber function s , see below, for multivariate realiza-
tion, which can not only avoid the underestimation char-
acteristics caused by the ℓ1 -norm regularization solution,
but also enhance the sparsity of the target [26-27,29]

sb(x) = s(b2x)/b2, b 6= 0, (5)

where b ∈ R is a scale variable and an univariate Huber
function is

sb(x) =











1

2
x2, if |x| ≤ 1

|x| − 1

2
, if |x| ≥ 1

. (6)

If b = 0, then So = 0, hence if b 6= 0, the variable
scale Huber function is

sb(x) =











1

2
b2x2, if |x| ≤ 1/b2

|x| − 1

2b2
, if |x| ≥ 1/b2

. (7)
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According to Huber function, the variable scale mini-
max concave penalty function is

ϕb(x) = |x| − sb(x). (8)

If the matrix B ∈ RM×N , the multivariate generalized
ϕB(x) of the variable-scale minimum-maximum concave
penalty function can be obtained, that is, the generalized
minimum-maximum concave penalty function GMC

ϕB(x) = ‖x‖1 − sB(x). (9)

Among them, sB(x) is a multivariate extension of
Huber function, and

sB(x) = inf
v∈RN

‖v‖1 +
1

2
‖B(x− v)‖22}. (10)

Among them, v is a point in the field of x . For a given
B ∈ RM×N , the GMC penalty function satisfies

ϕB(x) = ‖x‖1 −
1

2
‖Bx‖22, ‖BHBx‖∞ ≤ 1. (11)

This shows that the GMC penalty function approxi-
mates the ℓ1 -norm around 0. which is

ϕB(x) = ‖x‖1, x ≈ 0. (12)

How to set GMC penalty function to keep regularized
convex least squares loss function is considered. The ob-
jective function of sparse regularization is constructed

F (x) =
1

2
‖y −Ax‖22 + λϕB(x), (13)

where ϕB satisfies the penalty function of (9), if

BHB ≤ 1

λ
AHA, (14)

so F is a strictly convex function. In order to satisfy the
convex condition of (14), let

B =
√

γ/λA, 0 ≤ γ ≤ 1. (15)

When γ ≤ 1, BHB ≤ (γ/λt)AHA satisfies (14). Pa-
rameter γ controls the non-convexity of the penalty func-
tion ϕB . When γ = 0, then B = 0, and the penalty
function is reduced to the L1 norm; when γ = 1, the
penalty function is non-convex to the maximum. In prac-
tice, 0.5 ≤ γ ≤ 0.8 is usually taken.

The purpose of de-noising is achieved by solving the
convex optimization problem of (13). When B satisfies
(14), the near end algorithm can be used to minimize
the objective function F , that is, the optimal convex
solution of F is transformed into a saddle point problem
[26-27,29]:

(xopt, yopt) = arg min
x∈RN

max
v∈RN

{

1

2
‖y −Ax‖22 +

λ‖x‖1 − λ‖v|1 −λ

2
‖B(x− v)‖22

}

. (16)

The saddle point problem is an example of monotone
inclusion problem. Therefore, forward backward (FB) al-
gorithm can be used to solve this problem. FB algorithm
only involves simple calculation steps as follows

1) Input y ,A ,λ ,γ ;

2) Initialize ρ = max{1, γ/(1 − γ)‖AHA‖2} ,0 < µ <
2/ρ ;

3)For i = 0, 1, 2, · · · , the iteration is as follows

ωi = xi − µAH
(

A(xi + γ(vi − xi))− y
)

,

ui = vi − µγAHA
(

vi − xi
)

,

xi+1 = fλµ
(

ωi
)

,

vi+1 = fλµ
(

ui
)

;

iterate until convergence, then output x , and get the
original signal to be extracted.

2.2 Wavelet de-noising

For the observed noisy signal y = x + n , the original
signal is x and the noise is Gaussian white noise n.

The unbiased risk estimation threshold in wavelet de-
noising theory is adopted, that is, each coefficient of signal
y wavelet decomposition is taken as absolute value, then
sorted in ascending order and squared to obtain a new
sequence W = [{w1}, {w2}, · · · , {wN}] , and the unbiased
risk estimation threshold can be defined as

rk =
√
wkmin. (17)

Among them, wkmin is the minimum risk point of the
risk curve Rish(k))

Rish(k) =]
1

N

[

N − 2k +
(

N − k)wk +
k
∑

i=1

wi

]

(18)

k = 1, 2, · · · , N . Here, because the signal after GMC
de-noising still contains some sparse noise, the wavelet
threshold here is adjusted according to the noise level
estimation of each layer of wavelet decomposition.

2.3 De-noising method based on GMC-wavelet

Electrical equipment usually has serious environmen-
tal noise interference, and the PD ultrasonic signal is
weak. After GMC de-noising, the signal also contains
some sparse noise. In order to improve the de-noising abil-
ity, wavelet de-noising is introduced, and a PD ultrasonic
signal de-noising method based on GMC-wavelet is pro-
posed.

In this de-noising method, GMC is used to enhance
the PD ultrasonic signal sparsely to eliminate the noise.
Then unbiased estimation is used based on wavelet, and
the noise level estimation is adjusted according to the
wavelet decomposition to achieve the sparse noise de-
noising. Finally, the results of wavelet de-noising are re-
constructed to obtain the de-noised PD ultrasonic signal.
The de-noising process is shown in Fig. 1.
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Fig. 1. The Principle block diagram of de-noising method based
on GMC-wavelet
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Fig. 2. Simulation, signal x(t) : (a) – without noise, (b) – with
noise

3 De-noising and analysis of simulation signal

Due to the long-term operation of large motor in
strong electromagnetic interference environment and other
noise interference, the PD ultrasonic signal generated by
insulation is often weak and submerged in the noise,
which is not conducive to the analysis and processing
of PD ultrasonic signal. It is difficult to verify the de-
noising effectiveness of the proposed method based on
GMC-wavelet if the actual PD ultrasonic signal is di-
rectly used. Therefore, a simulated mixed signal x(t) is
designed, which is composed of two exponential oscilla-
tion attenuation signals

x(t) =











50 e−15t sin(160πt), if 0.146 ≤ t ≤ 0.317,

4000 e−10t sin(160πt), if 0.684 ≤ t ≤ 0.928,

0, otherwise.
(19)

The mixed simulation signal is shown in Fig. 2(a). Then
the x(t) is superimposed with the Gaussian white noise
signal with the mean value of 0 and the standard devia-
tion of 1, and the x(t) mixed simulation signal with noise
is shown in Fig. 2(b).

To intuitively analyze the de-noising effect based
on GMC-wavelet, and compare with GMC de-noising,
ℓ1 -norm de-noising, wavelet de-noising, and ℓ1 -norm-
wavelet de-noising, these methods are applied to de-noise
in Fig. 2(b), and the waveform after de-noising is shown in

Fig. 3. As can be seen from Fig. 3(a)-(c), compared with
Fig. 2(b), the waveform based on ℓ1 -norm, GMC-wavelet
de-noising has achieved a great degree of de-noising effect.
However, in terms of waveform, Fig. 3 (a) contains more
high-frequency noise than (b) and (c), and Fig. 3(c) has
the least high-frequency noise after wavelet de-noising.
Figure 3(d) is the waveform after de-noising based on ℓ1 -
norm-wavelet, which shows less high-frequency noise than
Fig. 3(a), indicating that the de-noising effect based on
ℓ1 -norm-wavelet is better than that based on ℓ1 -norm.
Similarly, it can be seen that the de-noising effect based
on GMC-wavelet in Fig. 3(e) is obviously better than that
based on GMC.
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(a)
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0 0.2 0.4 10.6 Time (s)
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(  )b
5
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-5

(  )d
5

0

-5

( )c

Fig. 3. The waveform of simulation signal x(t) with noise after
de-noising based on: (a) – ℓ1 -norm, (b) – GMC, (c) – wavelet,

(d) – ℓ1 -norm wavelet, and (e) – GMC-wavelet

To further observe the frequency domain changes of
the signal before and after de-noising, fast Fourier trans-
form is performed on Fig. 2(b) and Fig. 3(a)-(e) respec-
tively to obtain the spectrum of the corresponding signal,
as shown in Fig. 4. It can be seen in (a) that the main
frequency spectrum value of the original simulation sig-
nal x(t) with noise is 80Hz, which is the same as that
of the simulation signalx(t), but it is accompanied by a
strong noise spectrum value in the whole frequency do-
main. Fig. 4(b) is the Fourier spectrum of the waveform
after ℓ1 -norm de-noising. Compared with Fig. 4(a), the
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Fig. 4. The Fourier spectrum of: (a) – original signal with noise, (b) – de-noised using ℓ1 -norm, (c) – GMC, (d) – wavelet, (e) – ℓ1 -norm
wavelet, and (f) – GMC-wavelet
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Fig. 5. Experiment model of PD: (a) – (1-bar conductor, 2-main
insulation, 3-anti-corona layer, 4-internal air gap), (b) – (1-bar con-
ductor, 2-main insulation, 3-anti-corona layer, 4-oil contamination)
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Fig. 6. The ultrasonic original signal of PD in insulation

main value of the spectrum is kept at 80Hz, and the noise
in other frequency domains is weakened, which is consis-
tent with the time domain de-noising effect in Fig. 3(a).
Figure 4(c) is the Fourier spectrum of the waveform after
GMC de-noising. It also keeps the main value of the spec-
trum at 80Hz. Compared with Fig. 4(a) and (b), the noise
in other frequency bands is almost eliminated, and there
are only some sparse single spectrum values. Compara-
tively speaking, the de-noising effect is better than that

based on ℓ1 -norm. Fig. 4(d) is the Fourier spectrum of
the waveform after de-noising based on wavelet. Its high-
frequency noise almost does not exist, but compared with
Fig. 4(b) and (c), the low-frequency noise elimination is
weak.

Figure 4(e) is the Fourier spectrum of the waveform af-
ter de-noising based on ℓ1 -norm-wavelet. Compared with
Fig. 4(b), the high-frequency noise is almost eliminated,
and the low-frequency noise is also weakened a lot; the
principal value of 80Hz spectrum is also a little smaller,
because the noise is superimposed on the principal spec-
trum, which is also eliminated at this time. Figure 4(f) is
the Fourier spectrum of the waveform after GMC-wavelet
de-noising. Compared with Fig. 4(c), the sparse single
spectrum value in the high frequency band is almost elim-
inated; compared with Fig. 4(e), the noise in the low fre-
quency band is also weakened.

Table 1. Comparisons of de-noising results of the five methods

Method SNR(dB) RMSE

ℓ1 -norm 7.48 0.42

GMC 8.31 0.38

wavelet 8.11 0.39

-norm-wavelet 8.04 0.39

GMC-wavelet 8.74 0.36

From the comparison and analysis of the above time-
frequency waveforms, it can be seen that the de-noising
effect based on GMC-wavelet is better than other several
de-noising methods.

To quantitatively evaluate the de-noising effect of the
five methods, SNR and RMSE are introduced as eval-
uation indexes to measure the de-noising effect of the
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Fig. 7. The waveform of ultrasonic original signal of PD in insu-
lation after de-noising based on: (a) – ℓ1 -norm, (b) – GMC, (c) –

wavelet, (d) – ℓ1 -norm wavelet, and (e) – GMC-wavelet

original noisy simulation signal x(t). Through the exper-

imental calculation, the evaluation index results after five

methods of de-noising are shown in Tab. 1.

It can be seen that the SNR value after GMC-wavelet
base de-noising is the largest and the RMSE value is
the smallest, indicating the best de-noising effect. The
SNR value based on ℓ1 -norm is the smallest, the RMSE
value is the largest, and the de-noising effect is the worst,
which is consistent with the time domain analysis of Fig. 3
and Fig. 4. The SNR values based on GMC and wavelet
respectively are larger than those based on ℓ1 -norm-
wavelet, and the SNR value based on GMC is larger than
that based on wavelet, while the corresponding RMSE
value is on the contrary, which shows that the de-noising
effect based on ℓ1 -norm-wavelet is not better than that
based on simple wavelet. In addition, after many exper-
iments, the five de-noising methods for different simula-
tion signal de-noising analysis results will change, but the
effect is still based on GMC-wavelet de-noising method is
the best.

4 De-noising analysis of PD ultrasonic signal

In order to verify the de-noising effect of the proposed
de-noising method, two kinds of PD models of large motor
are adopted for experimental verification, namely inter-
nal discharge and end discharge of winding insulator, as
shown in Fig. 5 [7-11]. Figure 5(a) is the internal discharge
model of winding insulator, which simulates the air gap
in the insulation bar due to manufacturing process prob-
lems. These air gaps are operated under high pressure
and other environments for a long time, and it is easy
to reach the breakdown field strength and lead to PD,
which further reduces the insulation strength and makes
the insulation damage or breakdown. Fig. 5(b) is the end
discharge model. There are oil pollutants on the surface
of the end discharge model, which reduces the surface in-
sulation strength and is easy to produce surface PD. The

0 0.5 1.5Frequency (MHz)

15

5

10

(e)

0 0.5 1.5Frequency (MHz)

15

5

10

(f)

15

5

10

(d)

15

5

10

Amplitude (V)

(a)

15

5

10

Amplitude (V)

(b)

15

5

10

(c)

Amplitude (V)

0 0.5 1.5Frequency (MHz)

Fig. 8. The Fourier spectrum of ultrasonic signal of PD in insulation (a) – original signal, after de-noising: (b) – ℓ1 -norm, (c) – GMC,
(d) – wavelet, (e) – ℓ1 -norm wavelet, and (f) – GMC-wavelet
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Fig. 9. The ultrasonic original signal of PD on end surface

two PD models are made of single bar of 36 MW/4 KV
generator.

The ultrasonic sensor used is made of PZT sensitive
elements, with a frequency response range of 20–200kHz.
Then through 100 times the signal gain, the PD ultrasonic
signal is acquired by the oscilloscope.

According to the internal discharge model in Fig. 5(a),
by adjusting the Hv end of the step-up transformer, when
the voltage rises to 2.5KV, the oscilloscope adopts the PD
ultrasonic signal, as shown in Fig. 6. It can be seen from
Fig. 6 that the PD ultrasonic signal contains strong noise
and two strong PD impulse signals.

Similar to the above analysis of the simulation signal
containing noise, the noise of the PD ultrasonic signal
in the insulation in Fig. 6 is also eliminated based on
ℓ1 -norm de-noising, GMC de-noising, wavelet de-noising,
ℓ1 -norm-wavelet de-noising and GMC-wavelet de-noising,
and the de-noised results are shown in Fig. 7(a)-(e). Be-
cause the signal in Fig. 6 is the actual PD ultrasonic sig-
nal, due to the experimental environment and detection
equipment and other factors, it is impossible to obtain the
ideal original PD ultrasonic signal without noise. There-
fore, SNR and RMSE cannot be used to compare the
de-noising effects of the five methods qualitatively and
quantitatively.

However, the de-noising time-frequency diagram can
still be used to qualitatively evaluate the de-noising effect.
Compared with Fig. 6, the noise amplitude in Fig. 7(a)
is obviously smaller in the time domain without PD ul-
trasonic signal, and the amplitude of PD signal is also
relatively smaller, because it is also superimposed with
noise and eliminated. In Fig. 7(b) and(c), compared with
Fig. 6, similarly, in the time domain without PD, the
noise amplitude is obviously smaller, and in some time
domain, the noise in Fig. 7(c) is completely eliminated.
The noise amplitude of Fig. 7(d) is smaller than that of
Fig. 7(a). Similarly, the noise amplitude of Fig. 7(e) is
smaller than that of Fig. 7(b), and some noises no longer
exist. It shows that the de-noising effect based on -norm-
wavelet and GMC-wavelet is better than that based on
ℓ1 -norm and GMC respectively.

To further analyze the de-noising effect from the fre-
quency domain, Fourier transform is performed on each
waveform in Fig. 7 to obtain the signal spectrum, as
shown in Fig. 8, respectively. It can be seen from Fig. 8
that the dominant frequency of PD ultrasound in the in-
sulation is about 85 kHz. In Fig. 8(b) and(c), compared

with Fig. 8(a), there are only a few sparse spectral val-
ues in the high frequency band, and there are almost no
spectral values in the low frequency band of Fig. 8(c).
Compared with Fig. 8(a), the high-frequency frequency
spectrum in Fig. 8(d) does not exist, but there are more
spectrum values near the main frequency spectrum value
compared with Fig. 8(b) and(c), which shows that the
de-noising effect based on wavelet is not as good as the
other two methods near the main frequency value. Com-
pared with Fig. 8(b), the sparse spectrum value of other
frequency bands in Fig. 8(e) is smaller, which shows that
the de-noising effect based on ℓ1 -norm-wavelet is better
than that based on -norm. Compared with Fig. 8(c) and
other spectrums, Fig. 8(f) has almost only the main fre-
quency spectrum value, which indicates that the original
noise is almost completely eliminated after GMC-wavelet
de-noising.

To verify the de-noising effect of different actual PD
ultrasonic signals, the experimental object made of the
end surface discharge model in Fig. 5(b) is used. Similarly,
by adjusting the Hv end of the step-up transformer, when
the voltage rises to 3.3 kV, the oscilloscope adopts the PD
ultrasonic signal, as shown in Fig. 9. It can be seen from
Fig. 9 that the PD ultrasonic signal also contains strong
noise and a strong PD impulse signal.

Similarly, the PD ultrasonic signal of end surface in
Fig. 9 is de-noised based on ℓ1 -norm, GMC, wavelet,
ℓ1 -norm-wavelet and GMC-wavelet. The de-noised wave-
forms are shown in Fig. 10(a) -(e) respectively. At the
same time, the Fourier transform is performed on each
waveform in Fig. 10 to obtain each spectrum, as shown
in Fig. 11.

It can be seen from Fig. 10 that compared with Fig. 9,
the waveforms de-noised by the five methods are obvi-
ously smaller in the time domain except for the PD signal,
which indicates that the five methods are also effective in
de-noising the ultrasonic signal of PD on the end surface.
It can be seen from Fig. 11 that there are several main
frequency values of the signal, and there are larger spec-
trum values in the frequency domain of 30 kHz, 60 kHz
and 90 kHz respectively. Compared with Fig. 8, it shows
that the spectrum characteristics of different types of PD
ultrasonic signals are different.

Compared with Fig. 8(d), the noise amplitude in
Fig. 8(b) and(c) is almost nonexistent near the main
frequency spectrum, which indicates that the de-noising
effect based on ℓ1 -norm and GMC is better than that of
wavelet. Compared with Fig. 8(b) and(c), Fig. 8(e) and(f)
have no sparse spectrum value in high frequency band,
that is, high frequency noise is eliminated, which is the
same as the de-noising effect of internal PD ultrasonic sig-
nal, indicating that the de-noising effect based on GMC-
wavelet and ℓ1 -norm-wavelet is better than that based on
ℓ1 -norm and GMC. The main frequency spectrum value
in Fig. 8(e) is larger than that in(f), which indicates that
GMC-wavelet is better than ℓ1 -norm-wavelet to keep the
original signal.
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Fig. 10. The waveform of ultrasonic original signal of PD on end
surface after de-noising based on: (a) – ℓ1 -norm, (b) – GMC, (c) –

wavelet, (d) – ℓ1 -norm wavelet, and (e) – GMC-wavelet

Combined with the analysis of the de-noising effect
of the noise simulation signal, the actual PD ultrasonic
signal de-noising effect of the five methods has changed,

but the GMC-wavelet de-noising effect is the best. It
not only eliminates most of the noise components, but
also best retains the effective information of the original
signal. It can be seen that the effect of GMC-wavelet de-
noising method on different signals is different, but the
performance of noise elimination remains unchanged.

During the experiment, it is found that the unbiased
likelihood estimation threshold rule of the wavelet is con-
servative. When a small part of the high-frequency in-
formation of the noisy signal is in the noise range, this
threshold is very useful and can extract weak signals.
Unbiased likelihood estimation is an adaptive wide value
selection. Although the overall continuity is good, un-
biased likelihood estimation requires a given threshold,
and there is always a constant deviation between the es-
timated value and the actual value, and the derivative
of the soft threshold function is discontinuous, which has
certain limitations. The wavelet function is not unique,
and can only be selected and determined through con-
tinuous experiments. In addition, the regularization pa-
rameter and the maximum eigenvalue of the generalized
minimax concave(GMC) also need to be selected.

5 Conclusions

PD ultrasonic signals often contain strong noise due
to the influence of the detection environment, which is
unfavorable for ultrasonic signal feature analysis and in-
sulation performance diagnosis. Aiming at the non-linear
and non-stationary characteristics of PD signals, a de-
noising method for PD ultrasonic signals of large mo-
tors based on GMC-wavelet is proposed. Compared with
the ℓ1 -norm, GMC avoids the system underestimation
characteristic of ℓ1 -norm regularization, and further in-
creases the sparsity of the objective function. In addi-
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Fig. 11. The Fourier spectrum of ultrasonic signal of PD on end surface (a) – original signal, after de-noising: (b) – ℓ1 -norm, (c) – GMC,
(d) – wavelet, (e) – ℓ1 -norm wavelet, and (f) – GMC-wavelet
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tion, combined with wavelet, the remaining sparse high-
frequency noise and low-frequency noise are effectively
removed. Compared with the de-noising effect of ℓ1 -
norm method, GMC method, wavelet method and ℓ1 -
norm-wavelet method for PD ultrasonic simulation sig-
nals and test model signals, the SNR and RMSE of the
proposed method after de-noising are the best. It not only
eliminates high-frequency noise, but also eliminates low-
frequency noise, but also retains the effective information
of PD ultrasonic signals, which can provide a new idea for
noise elimination of other types of PD ultrasonic signals.
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