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PAPERS

Instruction mapping techniques for processors
with very long instruction word architectures

Roman Mego1 , Tomas Fryza2

This paper presents an instruction mapping technique for generating a low-level assembly code for digital signal processing
algorithms. This technique helps developers to implement retargetable kernel functions with the performance benefits of the
low-level assembly languages. The approach is aimed at exceptionally long instruction word (VLIW) architectures, which
benefits the most from the proposed method. Mapped algorithms are described by the signal-flow graphs, which are used
to find possible parallel operations. The algorithm is converted into low-level code and mapped to the target architecture.
This process also introduces the optimization of instruction mapping priority, which leads to the more effective code. The
technique was verified on selected kernels, compared to the common programming methods, and proved that it is suitable
for VLIW architectures and for portability to other systems.
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1 Introduction

The computing power of processors has been steadily

increasing since its invention. This goal was achieved by
higher operating frequencies [1] or by the addition of more

features, such as a special instruction set for signal pro-
cessing [2]. This instruction set may include multiply and

accumulate operations, fused multiply-add, vector oper-
ations or saturated arithmetic [3], [4]. The extra instruc-

tions are realized with higher transistor density, which
means higher power consumption despite the fact, that

each transistor has lower operating voltage to achieve

fewer thermal losses. It could result in overheating prob-
lems, especially with higher operating frequencies and

smaller dimensions, which should be considered during
system design [5].

Processor development has taken a different direction

in the last two decades. Higher computing performance
has been achieved by using parallel data processing [6].

It includes instruction sets for vector processing, multiple
functional units in one processor core, or multiple cores

or processors in one system.

The software point of view is also important for fi-
nal performance. The time-critical parts of programs are

usually written in low-level assembly language to achieve
optimization in terms of code size and execution speed.

On the other hand, it is not easy to write a complex soft-
ware and low-level code is usually fixed only on specific

architecture. These problems can be solved by using high-
level languages, such as ANSI/ISO C, C++, and others.

Modern compilers can highly optimize final code. This
feature works perfectly on scalar processors but on cer-

tain architectures containing instruction parallelism, such

as VLIW (very long instruction word) [7], the standard
optimization is still not effective.

In [8], Rajagopalan et al extended the VLIW compi-
lation environment to develop the retargetable optimiza-
tions for DSPs (digital signal processors). There are other
tools and frameworks, but they are intended for generat-
ing code on different platforms and accelerators, such as
FPGAs, GPUs, CPUs, or heterogeneous systems.

In [9], an approach for automatic generation of archi-
tecture-level models for processors and accelerators from
their RTL (register transfer level) designs was proposed.
Fang et al [10], introduced an automatic hardware design
tool and generator of RTL codes in Verilog HDL, which
can be implemented to FPGA devices. Xing et al in [11],
presented a formal model of the GPU using instruction-
level abstraction techniques. The model enables the veri-
fication of multithreaded programs. Steuwer et al in [12],
introduced a new internal representation for OpenCL,
which encodes constructs as functional patterns. In [13],
authors proposed a new thread low-level architecture in-
dependent mapping scheme for GPGPU (general-purpose
graphics processing unit) programming. A set of lower-
level abstractions of large-scale heterogeneous systems,
including multidimensional arrays and SIMD (single in-
struction multiple data) vectorization was described in
[14]. A template-based optimization framework to auto-
matically generate fully optimized assembly code for sev-
eral dense linear algebra kernels on varying multi-core
CPUs was presented by Zhang et al in [15].

This paper describes a tool suitable for generating
a low-level assembly code for signal processing kernels
on VLIW architectures and includes memory access and
instruction mapping optimization techniques.
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Fig. 1. Example of algorithm description:(a) – syntax,(b) – signal-flow diagram

We introduce the current programming and optimiza-
tion methods and identified the main problems in creating
the efficient codes. The main idea of the proposed method
for instruction mapping on DSPs with instruction paral-
lelism is described together with a tool for creating op-
timized low-level code for digital signal processing func-
tions and illustrates the new optimization processes to
achieve the better performance of the generated code. Ex-
perimental results which include output efficiency on se-
lected digital signal processing algorithms are presented.

2 Related works

The programming languages as ANSI C and C++ are
commonly used in software development for embedded
devices. Compilers for these languages generate an effi-
cient code on scalar systems for control application but
they achieve lower results in some exceptional cases. The
following examples refer to the standard C/C++ expres-
sions:

• inability to express special operations with saturation;

• inability to express vector operations;

• inability to mark the independent part of programs
which can be run in parallel.

Some of them were removed using the optimized DSP
and math libraries provided by processor manufacturers,
such as [16] or [17]. These libraries usually consist of pre-
processor macros for using special instructions or whole
functions, which are written in low-level assembly. Using
this approach leads to highly optimized, but non-portable
code.

Another solution of writing parallel data processing is
to use compiler extensions, such as OpenMP. This ap-
proach is aimed on multi-core systems so it cannot be
used on to define instruction-level parallelism.

The code optimizations are set of analyze and trans-
form operations which find and replace parts of code with
more efficient alternatives. The compilers use two main

techniques to determine the code parts to optimize [18-
20]:

• control flow analysis;

• data flow analysis.

Control flow analysis is based on the examination of
control statements which can branch the program. In this
case, the optimizations are applied on the possible paths
of program execution. Data flow approach analyzes the
usage of data in program and can be used for reducing
number of variables, optimize loading of constants and
data transfers.

These methods separate source code into basic blocks
and execute operations to increase performance, such as
dead and redundant code elimination, loop unrolling, con-
stant folding, copy propagation transformation, and oth-
ers [18]-[20].

3 Signal-flow graph approach

The standard optimization methods used by compilers
are aimed to reduce unnecessary code, but they are de-
signed more likely for the control applications. The goal
of proposed approach is to eliminate causes of the perfor-
mance degradation. The main points are:

• reduce memory access and increase usage of the
general- purpose registers for storing temporal data;

• reduce data transfer between internal data paths;

• increase instruction parallelism by breaking the rules
of the execution order given by notation of the source
code. With signal-flow graphs, an algorithm is de-
scribed only with the relations between signal values
and without the processing order. The relations are
like the data-flow analysis in commonly used compil-
ers but for different purpose. Normally, it is used to
identify identical or similar parts of the code.

The proposed tool uses this description for finding in-
dependent parts of data processing, which lead to identi-
fication of possible parallel execution order.
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The signal-flow graph-based approach is like the HDL
(hardware description language). The algorithm descrip-
tion contains two basic elements, signals and nodes. The
signal is equivalent to a variable in C language but in the
tool’s description it can be assigned only once.

For illustration, Fig. 1(a) shows an example of the
algorithm description code and Fig. 1(b) its graphical
representation. The code here has three signals X,Y and
W which can be compared to the input arguments of the
function in C language. Signal X is the pointer to array
with input values, signal Y is the pointer to output array
and W is the other input parameter. Internal signals
A,B,C,D and TMP are used for temporal results. Note
that, the algorithm here consists of two processing levels
and operations are not needed to be strictly written in
the processing order. The more detailed description of
algorithm syntax was published in [21].

4 Instruction mapping technique

The goal of the mapping process is to assign opera-
tions from the algorithm description to the target proces-
sor hardware resources. The parsed algorithm is stored as
the list of nodes and signals. Some of the operations can
be composed of the multiple nodes, typically the memory
operations via pointers. The nodes and signal structure
contains additional information, such as assigned instruc-
tions, functional units or registers.

At this point, only instructions can be assigned to the
node according to its operation.

4.1 Node sorting

When an algorithm is parsed, the relations between
nodes is found and the possible execution order is created.
Figure 2 shows how the execution level is determined.
Nodes which process input signals have the execution
level zero (node 1) and they can be executed immediately.
If a node processes at least one signal which is result of
another node, then its execution level is higher (nodes 2,
3). Let constants (node C) have execution level zero to
ease assignment on the other nodes. When all nodes have

assigned its level, the constants are moved right before the

nodes which use its value; here the node C was moved to

the execution level 1. At this point, the algorithm can

be mapped to the functional units, but the result will

be highly depending on the algorithm definition. For this

reason, additional parameters are added for performance

increase.

The first parameter is the number of instruction cy-

cles. Figure 3 shows two examples with three pipelined

independent instructions i1, i2, i3 with different duration

but executed by the same functional unit A. The green

squares represent moments when the instruction execu-

tion starts and blue ones when results are written, and

instruction ends. The right-hand case has the ideal order,

when the first executed instruction takes five CPU cycles,

and the last instruction takes three cycles before the re-

sult is written to the destination register(s). The case on

the left-hand side is the worst case when the instructions

are executed in the reverse order. The execution of all

instructions here takes seven CPU cycles instead of five.
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The second parameter is the number of supported
functional units by which an instruction can be executed.
Figure 4 shows the situation with two functional units A
and B and five independent instructions i1 to i5 with
different duration of three or four CPU cycles. Let the
shorter instructions i1, i2, i3 (three CPU cycles) be exe-
cuted on both functional units. The longer instructions
i4, i5 (four CPU cycles) can be executed only on func-
tional unit A. The case on the left-hand side is the worst
case, when short instructions are allocated first and longer
instructions are allocated later. The result is that the
functional unit B executes only one instruction i2 and

the rest is executed by functional unit A. It takes seven
CPU cycles to finish execution of all five instructions.
The situation on the right-hand side is ideal because the
longer instructions were allocated first, so they are not
blocked by the shorter instructions. The total execution
now takes five CPU cycles.

4.2 Functional unit allocation

Each node needs to have a minimal start cycle when
the instruction can be allocated. This cycle is determined
only if all instructions from the previous execution level(s)
are completely mapped. Exceptions are nodes with exe-
cution level zero which can be executed immediately at
the beginning.

Let Fig. 5 show the four instructions and let i4 on
execution level N depend on results from i1, i2, and i3 on
lower execution level N − 1. Since the last result of these
instructions is written on 5-th CPU cycle, the examined
instruction i4 could be executed in the 6-th CPU cycle
at the earliest.

The instruction mapping into a functional unit is based
on the first-fit method when instruction is mapped into
the first suitable position. Unlike the memory manage-
ment, this allocation process considers two dimensions:
functional unit and time. The priority on functional unit
examination can be applied as well.

A functional unit that can execute the selected instruc-
tion is searched for from the first possible cycle. When an
unused functional unit is found, the node is placed into
the map. If there is not any available functional unit, the
instruction cycle is incremented, and the process is re-
peated. When the functional unit priority is not applied,
the mapping depends on the order of functional unit in
architecture definition.

The first allocation method prefers the functional units
that supports the least number of instructions presented
in the algorithm, so there is a bigger chance that the
allocated node will not block the next operations. The
order of the functional unit examination is fixed through
the process.

In the second allocation method, the functional unit
examination is dynamic according to the instructions in
the remaining unallocated nodes. In each node allocation
step, it finds several upcoming nodes which can be exe-
cuted on each functional unit. The highest priority has
the functional unit with the smaller number.

4.3 Signal allocation

Signals are allocated to general purpose registers after
all nodes are mapped. The reason is relationship between
the node’s execution time and the signal’s lifetime. Here,
the lifetime of a signal means time when register hold
a value from given node and cannot be rewritten. Because
the number of registers is limited, the signals are not
allocated during the whole algorithm process, but only
for the necessary time. The lifetime of the signal starts
by writing a value and it ends with the last reading. Only
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the input signals are allocated from the first instruction
cycle, and the output signals keeps their values until the
end of the algorithm.

Figure 6 shows examples of the signal lifetime used
by two nodes. On the left-hand side, the signal lifetime
starts one CPU cycle after the writing of i1 value and
it ends after the last instruction reading of the second
target node, ie by instruction i3 .

The second case on the right-hand side shows the sit-
uation when instructions need more than one CPU cycle
for reading and writing operations, typically when dou-
ble values are processed. The lifetime ends after the read
(instruction i5 ), like in the previous case but it starts af-
ter the first CPU cycle of the write operation (instruction
i4 ).

When all signals have its lifetime, they are allocated to
the registers. The 2D map of the register usage in time is
created, and the registers are placed into this map using
the first-fit method. After this procedure, the final low-
level assembly code is generated according to the target
device description.

5 Experimental results

The potential of the proposed mapping technique was
verified by VLIW-architecture processors, which process
data on multiple functional units in parallel. The used
hardware resources model was based on TMS320C6678
device. It is a multicore DSP by TI, with fixed and
floating-point arithmetic support. The DSP integrates
eight C66x cores, each with two identical data paths A
and B. Each data path contains four functional units and
thirty-two 32-bit general purpose registers, see Fig. 7,
[22]. The functional units .L, .S, .M and .D are designed
for a different purpose and support different instructions.
The .L and .S functional units are designed for general
mathematical operations, the .M units have multiplica-
tion capabilities and .D are primarily used for memory
access.

5.1 Basic behavior

The functional verification was first performed without
memory access when input values and results are stored
in register files. For illustration, the achievable results are
presented by comprehensible 4-point FFT radix-2 with
time decimated complex input [23]. Thanks to the opti-
mizations from [24], the 4-point version contains only ad-
dition and subtraction operations. The part of algorithm
description without signal definitions is shown in Listing
1 and for better understanding, it can be visualized by
the generated DOT file [25] (see Fig. 8), where rectangle
symbols represent input, output and internal signals and
oval symbols represent all mathematical operations.

Listing 1: Part of 4-point FFT algorithm description

B1 RE =A1 RE + A2 RE

B1 IM =A1 IM + A2 IM

B2 RE =A1 RE − A2 RE

B2 IM =A1 IM − A2 IM

B3 RE =A3 RE + A4 RE

B3 IM =A3 IM + A4 IM

B4 RE =A3 RE − A4 RE

B4 IM =A3 IM − A4 IM

The final code generated for 32-bit fixed-point repre-
sentation is shown in Listing 2 with the appropriate com-
ments. The | | signs represent the parallel executions of 
instructions.

Listing 2: Part of 4-point FFT generated code with complex values 
and fixed-point representation

| | ADD .L1 A1, A3, A9 ; B1_IM =A1_IM + A2_IM 
    SUB . S1 A0, A2, A10   ;  B2_RE = A1_RE − A2_RE

| | ADD .D1 A0, A2, A8 ; B1_RE = A1_RE + A2_RE 
     ADD .L1 A4, A6, A12  ; B3_RE = A3_RE + A4_RE

| | ADD . S1 A5, A7, A13 ; B3_IM =A3_ IM + A4_IM

| | SUB . D1 A1, A3, A11 ;  B2_IM =A1_IM − A2_IM
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Table 1. Average hardware resources usage on selected algorithms without and with memory access

Without memory access With memory access

Algorithm
Data CPU Used (%) Total (%) CPU Used (%) Total (%)

type cycl. FUsa Regsb FUs Regs cycl. FUs Regs FUs Regs

int32 13 46.2 73.1 23.1 18.3 33 45.5 52.3 45.5 19.6

Mpy 2×2 float 15 40 63.3 20 15.8 32 46.9 54.3 46.9 18.7

double 15 40 63.3 20 31.7 52 51.9 44.5 51.9 30.6

Mpy 3×3
int32 32 70.3 81.6 35.2 50.9 64 59.8 50.5 59.8 41

float 36 41.7 71.4 32.3 46.9 63 60.7 46.4 60.7 34.8

int32 5 80 76 60 23.8 33 60.6 51.5 45.5 17.7

FFT4R float 9 66.7 73.6 33.3 18.4 34 58.8 46.3 44.1 17.4

double 10 80 78.6 40 39.4 61 61.2 48.5 45.9 30.3

int32 7 76.2 66.3 57.1 29 39 68.4 28.9 51.3 19.9

FFT4C float 12 66.7 79.2 33.3 19.8 41 65 59.3 48.8 18.5

double 12 66.7 79.2 33.3 39.6 73 65.8 50.3 49.3 31.4

FFT8R
int32 13 73.1 74.2 73.1 46.4 63 53.2 54.1 35.2 32.1

float 22 57.6 74.4 43.2 37.2 66 50.8 56.9 50.8 30.2

FFT8C
int32 20 70 86 70 53.8 78 58.9 53.9 58.9 37.1

float 30 62.2 82.6 46.7 43.9 85 54.1 53 54.1 34.8

int32 10 30 48.3 15 9.1 24 36.1 65 27.1 10.2

BQ1 float 16 18.8 38.5 9.4 7.2 30 21.7 56 21.7 8.8

double 16 18.8 38.5 9.4 14.5 40 28.8 46.3 28.8 17.3

int32 16 25 48.3 18.8 16.6 39 38.5 62.5 38.5 15.6

BQ2 float 26 23.1 40.9 11.5 14.1 44 34.1 56.8 34.1 14.2

double 26 23.1 10.9 11.5 28.1 68 39.7 55.8 39.7 24.4

int32 21 28.6 46.7 21.4 23.4 51 44.1 65.6 44.1 18.4

BQ3 float 33 18.2 40.3 13.6 20.2 53 42.5 55.5 42.5 17.3

double 33 18.2 40.3 13.6 40.3 89 45.5 64.8 45.5 28.3

BQ4
int32 23 34.8 49.8 26.1 32.3 63 47.6 57.1 47.6 19.6

float 37 21.6 42.5 16.2 27.9 69 43.5 57 43.5 17.8
aFunctional units, bGeneral purpose registers

From the generated low-level code can be seen that

only data path A was used and two instruction words

supply .L, .S.,and .D functional units. Note that it is not

complete listing of the 4-point FFT algorithm.

The following algorithms were selected for basic test-

ing: matrix multiplication, FFT with real and complex

inputs, and biquad filters. The duration and average oc-

cupancy of functional units and core registers are shown

A3_RE A _RE4 A _RE1 A _RE2 A1_IM A2_IM A3_IM A4_IM

add sub add sub sub add sub add

B3_RE B1_RE B4_RE B2_IM B2_RE B4_IM B1_IM B3_IM

add sub sub sub add sub add sub

C1_RE C3_RE C2_IM C4_IM C2_RE C4_RE C1_IM C3_IM

Fig. 8. Graphical representation of 4-point FFT with complex values and fixed-point representation
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Table 2. Improvement of the execution time on algorithms with memory access according to used optimization

Number of CPU cycles Improvement (%)

Algorithm
Data No Worst Node priority Unit priority Node priority Unit priority

type optim. case Cycle Unit Global Map Cycle Unit Global Map

int32 33 42 33 33 33 30 21.4 21.4 21.4 28.6

Mpy 2×2 float 32 42 32 32 32 32 23.8 23.8 23.8 23.8

double 52 78 54 54 52 52 30.8 30.8 33.3 33.3

Mpy 3×3
int32 64 95 66 66 64 59 30.5 30.5 32.6 37.9

float 63 95 63 63 63 63 33.7 33.7 33.7 33.7

int32 33 44 31 30 33 33 29.5 31.8 25.0 25.0

FFT4R float 34 44 30 30 34 34 31.8 31.8 22.7 22.7

double 61 84 59 59 61 61 29.8 29.8 27.4 27.4

int32 39 55 40 40 39 39 27.3 27.3 29.1 29.1

FFT4C float 41 54 39 39 41 41 27.8 27.8 24.1 24.1

double 73 102 70 70 73 73 31.4 31.4 28.4 28.4

FFT8R
int32 63 86 59 58 63 63 31.4 32.6 26.7 26.7

float 66 90 58 58 66 66 35.6 35.6 26.7 26.7

FFT8C
int32 78 110 76 76 78 78 30.9 30.9 29.1 29.1

float 85 111 77 77 85 85 30.6 30.6 23.4 23.4

int32 24 27 24 24 24 24 11.1 11.1 11.1 11.1

BQ1 float 30 34 30 30 30 30 11.8 11.8 11.8 11.8

double 40 49 40 40 40 40 18.4 18.4 18.4 18.4

int32 39 51 38 38 39 38 25.5 25.5 23.5 25.5

BQ2 float 44 56 44 44 44 44 21.4 21.4 21.4 21.4

double 68 92 68 68 68 68 26.1 26.1 26.1 26.1

int32 51 71 50 50 51 49 29.6 29.6 28.2 31.0

BQ3 float 53 72 54 54 53 53 25.0 25.0 26.4 26.4

double 89 126 91 91 89 89 27.8 27.8 29.4 29.4

BQ4
int32 63 92 62 62 63 63 32.6 32.6 31.5 31.5

float 69 94 68 68 69 69 27.7 27.7 26.6 26.6

on the left-hand side of Tab. 1. The allocated usage was

computed only from functional units and registers which

were used. The total usage was computed for all hardware

resources in one data path.

5.2 Values stored in data memory

The real-world verification assumes that input and

output data are stored in data memory and accessed

through pointers and can be comparable with high-level

language functions.

Compared to the previous case, the final implementa-

tion contains more signals and operations, given by the

multioperation nodes. These nodes are memory loading

and storing via pointers which can be performed only by

.D functional units. The right-hand part of Table I shows

the performance of selected algorithms. The computing

algorithm itself usually takes only about 1/3 of the total

duration, the rest takes memory access process.

5.3 Node priority

Previous cases have shown the results of instruction
mapping without any adjustment to their allocation. The
pro posed techniques support several priorities during the
mapping process, which should help to improve the gener-
ated code. The priority decision is based on the number
of functional units, or the number of instruction cycles
needed to execute the assigned instructions. Results from
both approaches are displayed on the right-hand side of
Tab. 2. Note that, the improvements are related to the
algorithms with memory access from Tab. 1.

It can be seen that the node priority mapping does
not propose any benefit for the matrix multiplications,
because the needed instructions cannot be easily moved to
another functional unit(s). It is because the multiplication
operations can only be done by .M units and the memory
access operations can be performed only by .D units.

On the other hand, the algorithms with the highest
improve- ment contain a wide variety of instructions and
it can be seen that FFT algorithms were executed up to
12% faster if the floating-point representation of real sig-
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Table 3. Execution time comparison with standard VLIW pro-
gramming approaches

Other approaches

Algorithm
Mapping Handwritten C code DSPLib

tool assembly equivalent Library

Mpy 2×2 32 22 40 64

Mpy 3×3 63 45 110 -

FFT4R 30 19 46 -

FFT4C 39 24 80 -

FFT8R 58 34 123 -

FFT8C 77 42 205 145

BQ1 30 16 31 68

BQ2 44 30 58 -

BQ3 53 41 67 -

BQ4 62 49 86 -

Table 4. Execution time comparison with high-level language on
scalar processor

Other approaches

Algorithm
Mapping C code CMSIS DSP

tool equivalent library

Mpy 2×2 61 37 172

FFT4R 61 44 -

BQ1 29 22 70

BQ2 63 42 122

BQ3 92 55 175

BQ4 123 72 227

nal values was used. Therefore, the priority node improve-
ments are critical issue. Here, number of used functional
units and needed CPU cycles were observed.

5.4 Functional unit priority

Another method for improving of final code proper-
ties is the functional units mapping priority. It is based
on statistics; how many potential operations can be per-
formed on each functional unit. There are two options
how the priority was set: global priority which is fixed for
the architecture and dynamically changing unit accord-
ing to the remaining unmapped nodes. The results are
shown in Tab. 2. The performance was com- pared with
the worst-case order for each examined algorithm. The
difference of the execution time can be up to 37%.

5.5 Comparison with other solutions

The results of proposed techniques were compared
with other programming approaches and available library
functions. The comparison is shown in Tab. 3 and crite-
ria were the execution time given by the number of CPU
cycles. Hand-written assembly code achieves the best re-
sults here, but can only be used for the simplest algo-
rithms, as it requires significant programming experience

with the target platform. The C code equivalent was com-

piled with TI C6000 compiler v7.3.1 and -o2 setting. It 
can be seen; the C code results were about 3 to 4-times 
slower. Only the 8-point complex FFT is available within 
the official TI DSP library for C66x architectures [16] 
and our result was about 1.7-times faster. For verification 
of proposed tool behavior, the ARM Cortex M4F scalar 
processor was defined and evaluated. The execution time 
comparison for biquad filters implemented by proposed 
techniques and by C language is shown in Tab. 4. The 
C code was compiled by ARM GCC v10.2.1, optimized 
with -o2 settings. As it can be seen, the final execution 
time for lower- order filters are close for both methods. 
The difference in higher-order filters was caused by the 
memory access when GCC is using a single PUSH/POP 
instruction for loading and storing multiple core registers.

6 Conclusion

This paper presented the instruction mapping tech-
niques for generating low-level assembly codes. The tech-
niques are primarily aimed to VLIW architectures to 
ease the optimization of the critical parts of DSP algo-
rithms, from communication and signal processing do-
mains. The proposed method comes with the program 
notation, based on the signal-flow graph. Here, any algo-
rithm is described only with relations between variables 
and not the execution order. This approach can be a sig-
nificant advantage especially on VLIW architectures in 
compare with the high-level compilers.

The performance of proposed method was verified by 
several DSP algorithms and compared to the handwrit-
ten assembly code, C code equivalent and DSP library 
provided by processor vendors. According to achieved re-
sults, the low-level assembly code has still the best perfor-
mance for the simplest algorithms, but the proposed code 
exceeded the C code and provided DSP library functions.

The results were achieved by the new optimization pro-
cess, using only a single data path. The second data path 
of each processor core can be used for multiple data pro-
cessing and thus double the performance. On the other 
hand, because of memory access operations, the tool can-
not be used for generating complex functions. Still, it is 
suitable for optimizing parts of low-level codes. Such parts 
can be reused on other architectures only by regenerat-
ing the target codes. This can not be possible if optimized 
parts were written directly.
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