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Performance of closed-form equations for force between cylindrical
magnets over wide range of volume, aspect ratio, and force

Stan Zurek1

Four types of magnets were used in this study: neodymium NdFeB (grade N35 and N52), ferrite (Y10), and samarium-

cobalt SmCo (XG30 2:17). They were chosen to represent a wide range of volumes from 0.035 to 19 cm3 (540 times), radius
R from 1.5 to 12.5 mm (8×), length L from 0.5 to 40 mm (80×), aspect ratio L/R from 0.051 to 17 (330×), and contact
forces from 0.2 to 250 N (over 1000×). The study shows that previously reported closed-form equations are valid only
at large distances (small forces). At short distances (large forces) the calculated force diverges to infinity or the accuracy
depends on the aspect ratio, and some equations fail more than others. A new equation is proposed as a small modification
of a previously known function, which provides reasonable behaviour over the whole studied range. However, the accuracy is
unknown in a general practical case, because theoretical calculations do not take into account imperfections of real magnets,
so there is no single absolute reference.

K e y w o r d s: closed-form equations, cylindrical magnets, forces between magnets, magnetic forces

1 Introductioon

Magnetic interactions between permanent magnets
can be calculated from Maxwell’s equations, which can
be solved analytically only for the simplest of geometries.
Cylindrical magnets can be treated analytically by quite
complex integrals [1-6], and provide good agreement with
experiments and with numerical finite-element methods
(FEM) [7]. However, the analytical and numerical tech-
niques require dedicated mathematical software, which
is not necessarily straightforward in practical use [7].
Therefore,closed-form equations are sought-for entities,
because they can be easily deployed with commonly used
engineering tools such as spreadsheet calculators.

2 Closed-form equations

Several authors proposed closed-form equations for
calculating the axial force acting between two identical
axially magnetized cylindrical magnets, placed on a com-
mon axis, Fig. 1. The resulting force can be either re-
pelling or attracting, depending on the polarity.

2.1 Equations for curve F = f(x)

One approach is to treat the magnets as point-like
magnetic dipole moments m , which are related to the
magnetization M and volume of the cylindrical magnet
V, as in (1). However, the value of M is typically not
available but can be calculated from the remanent flux
density Br [8, 9], which is typically given for commer-
cially available magnets, and so it can be used directly.

Thus, with µ0 being permeability of vacuum it can be
written M = Br/µ0.

m = MV =
Br

µ0
πR2L , (1)

where, M – magnetization, V = πR2L – volume of the
cylindrical magnet, R – cylinder radius, L – cylinder
length.

Fig. 1. Two co-axial cylindrical magnets (repelling): a = L/R
– aspect ratio, D – magnet diameter, L – magnet length, M
– magnetization, R – magnet radius, V – magnet volume, x –

separation (gap) between magnets

If the separation x between magnets is much greater
than their size ( x >> L, but also x >> R) then the size
of dipoles can be ignored ( ie treated as “points”) and the
force can be approximated [9-13],

FCast =
3µ0m

2

2πx4
=

3πB2
rL

2R4

2µ0x4
. (2)
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which is also given here converted to input values avail-
able commercially, as mentioned above.

It should be noted that (2) cannot be used for calcu-
lation of contact force ( ie magnets touching each other,
x = 0) because it diverges to infinity. However, in a gen-
eral case it is unknown in practice over which range the
equation is valid, and where it diverges too much to be
useful. For clarity, results of (2) will be referred to as
Castaner, after [9].

In [11] (Furlani), used an approach based on “magnetic
charges” concentrated on the circular surfaces, with the
positive terms denoting the repulsion and the negative
terms the attraction, and the total force is the net sum
of the contributing factors

FFur =
πB2

rR
4

4µ0

( 1

x2
+

1

(2L+ x)2
−

2

(L+ x)2

)

. (3)

The following equation, from [13] (Cheedket) behaves
more correctly, providing a value for x = 0 ( ie contact
force F0 ). However in [11], the value of Br was fitted
to the experimental data, so the predictive capability
of this equation was not proved, despite seemingly good
agreement of the curve shape with experiment over the
investigated range. However, as shown below, the shape
of this curve is ill-behaved for low aspect ratio ( ie coin-
like magnets) and small distance

FChee =
πB2

rR
2

2µ0

(

2(L+ x)
√

(L + x)2 +R2

−
2L+ x

√

(2L+ x)2 +R2
−

x
√

x2 +R2

)

. (4)

Another equation from [7] (Schomburg) is applied to
cuboidal magnets, but is included here because of its sim-
plicity. Unfortunately, values F0 (contact force) and de
(distance at which F (de) = F0/4) are unknown, and real
forces have to be measured and curve-fitted before cal-
culations can be carried out, or these values have to be
provided from other equations, which limits the applica-
bility of this approach

FSch(x) = F0
d2e

(x+ de)2
. (5)

For large distances, the force should be proportional to
1/x4 slope regardless of the shape of the magnets, yet no
such proportionality can be expected from (5). Hence, it
works reasonably only for relatively small distances, but
it is not possible to know where the equation begins to
fail in practice.

In this paper the author also proposes a modified func-
tion (new)

Fnew(x) =
πB2

rR
4

4µ0

( 1

x2
C

+
1

(2L+ xC)2
−

2

(L+ xC)2

)

. (6)

which is based on (3). The general mathematical expres-
sion is the same, but with the input variable x modified

to xc = x + c, by the length scaled by the aspect ratio
such that c = bL/a where b is a constant fitting coeffi-
cient. The c is a constant for a given geometry of mag-
nets, reducing to c = Rb, and can be set as c = 4R/5,
thus xc = x + 4R/5. The value of 4/5 has no “phys-
ical” meaning other than obtaining reasonable balance
between curve fit and contact force F0.

This equation was not derived in any strict way, but
simply applied in order to reduce the divergence to in-
finity for x = 0 . Yet, as shown below, it offers reason-
able behaviour over the whole range of distances, aspect
ratios, and forces, including predictive capabilities, and
calculation of the contact force F0 .

2.2 Equations for contact force F0 = f(0)

There are also equations, which aim only at predict-
ing the contact force F0, without representing the whole
curve. The following equation was originally derived in
[1] (Agashe), but it contained a printing error, which was
probably found out by Vokoun et al [14] so that a cor-
rigendum was issued [15]. A simplified version is further
converted here

FAga =

πB2
rR

2L

64µ0

√

R2 + L2

(

32+
3R4

(R2 + L2)2
−

9R8 + 12R6L2

(R2 + L2)4

)

. (7)

In [14], (Vokoun) are employed complete elliptic inte-
grals, which are not closed-form as such, but they can
be approximated with closed-form functions, with some
reasonable accuracy

FVok =
2πB2

rRL

µ0

(E(l1)−K(l1)

l1
−
E(l2)−K(l2)

l2

)

(8a)

where, K(. . . ) and E(. . . ) – complete elliptic integrals

of the first and second kind, respectively, also l1 =
(

1 +

(L/R)2
)

−1/2
and l2 =

(

1 + (L/2R)2
)

−1/2
.

An example of closed-form approximations for the
complete elliptic integrals, with 0.5% error is given for
instance in [16],

K(l) =
π

2(1− l)0.19
− 0.17(l+ 0.015)0.8 (8b)

E(l) =
π

2
− 0.567 l2.4+(l+0.1)5.8 (8c)

These approximating functions are used hereinbelow
on purpose (rather than the accurately calculated elliptic
integrals) in order to indicate the kind of error which can
be expected from such closed-form simplification.

The author would like to stress here, that the discrep-
ancies of the values referred to in this paper as Vokoun

result mostly from the imperfect approximations of ellip-
tical integrals 8(b),(c) and not due to any incorrectness of
8(a) as such. As shown below, these errors can be surpris-
ingly large (despite the 0.5% accuracy of approximation
of the integrals themselves). When proper integrals are
used then the results of Vokoun 8(a) are very close to
Agashe (7), but these are not repeated here, for brevity.
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2.3 Online tools

The online tools typically do not disclose any equa-
tions, but they can be easily accessed and conveniently
used, so the results of some of them are included here just
as additional references. There are several online tools
provided by magnet manufacturers and/or distributors.
A popular tool [17] is based probably on a numerical in-
tegration (as can be judged from the code included in the
webpage), but large differences for identical magnets and
almost identical magnets makes the validity of this par-
ticular approach questionable and thus not used in this
study.

An example of a more trustworthy tool is [18] (K&J,)
which computes repelling (or attracting) force over a
range of separation, including the contact force F0. The
exact method of calculation is not disclosed, but it is
stated on their website that: “This page calculates ex-
pected pull forces based on extensive product testing”,
and K&J confirmed to the author that they use propri-
etary equations based on extensive measurements as well
as FEM [19]. K&J tool provides both repelling and at-
tracting forces (which differ slightly, as they should due
to magnet permeability being slightly greater than unity),
and is sometimes used as a “reference” also by other re-
searchers, eg for Ansys [20]. It also is used here for the
same purpose, especially that it provides repulsive force
for smaller distances.

Another example is [21] (Supermagnete), for which the
calculation method is disclosed as based on FEM and
only provides values for attracting force at various dis-
tances. Assuming that the repulsive and attractive forces
are equal in the first approximation, the results can be
compared to other sources. There are also several calcu-
lators which give “pull force” or contact force F0, only at
x = 0. Those used in this paper are [22] (Dura) and [23]
(SDM), and they also do not disclose the equations, but
they can be used simply for comparison.

2.4 Finite-element method FEM

As an additional reference, 2D FEM simulations were
employed in axisymmetric mode, which correctly repre-
sents the 3D case due to rotational symmetry. Unfor-
tunately, FEMM [24] requires that a given part is sur-
rounded by air before the force acting on it can be cal-
culated, which prohibits the calculation of contact force.
An arbitrary decision was made to use a separation of 0.1
mm as a proxy for the “contact force”. Investigation of
analytical curves, K&J , and Supermagnete shows that
the difference in force between 0.1 mm and 0 mm is less
than 10%, which is mostly small when compared with
other differences, as evident from the figures.

3 Experimental

3.1 Note on the experimental approach

It should be clarified here that the measurements car-
ried out in this study were not meant to be used as the

direct experimental validation for the analytical calcula-
tions. The reason is that the actual parameters of the
real magnets can never be known with perfect accuracy.
At best, the nominal Br value is provided, which for N35
magnets can differ by 6.8% [25] which would impact the
forces by 14%. Additionally, the dimensions of magnets
are not precisely cylindrical. All the magnets have visibly
imprecise corners (see especially Fig. 2(c) and Fig. 2(e).
The NdFeB magnets are covered with a layer of ferromag-
netic coating (0.03 mm thick as measured by the author),
which contributes by some unknown amount to lowering
the total magnetic field outside of the magnet and there-
fore also the acting forces.

Fig. 2. Photographs of the magnets used in experiments: (a) –
NdFeB, N35, R = 8.5mm, L = 5mm, (b) – NdFeB, N35, R =
9.75mm, L = 0.5mm, (c) – NdFeB, N52, R = 12.25mm, L =
20mm, (d) – ferrite Y10, R = 2.5mm, L = 3mm, (e) – magnetified

view of Y10, (f) – Sm-Co, XG30, R = 1.5mm, L = 5mm

FEM model could take the mechanical imperfections
into account. But the simulation are only as good as
the input material data used to represent a given mag-
net grade. Simulation of magnets requires certain non-
physical tricks in the FEM software [24]. Therefore, the
same grade of a real magnet, the calculations performed
by the analytical equations, and the FEM modelling differ
to some unknown extent.

Therefore, the measurement method applied here was
aimed more at detecting the forces at large distances
with more accuracy, so that the magnetic dipole moments
could be compared with the Castaner asymptote of (2).
The short-distance tests are expected to be affected by
friction, and thus they should be treated more as an order-
of-magnitude test, rather than a precise measurement.

For these reasons, there is no single precise answer
which can be used as the absolute reference, and therefore
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Table 1. Configurations of magnet assemblies

R (mm) L (mm) a (-) Br (T) V (cm3 )

N35 8.5 5 0.59 1.189 1.1

N35 8.5 40 4.7 1.189 19

N35 9.75 0.5 0.051 1.189 0.039

N52 12.25 20 1.6 1.465 9.8

Y10 2.5 3 1.2 0.2175 0.059

Y10 2.5 24 9.6 0.2175 0.47

XG30 2:17 1.5 5 3.3 1.090 0.035

XG30 2:17 1.5 25 17 1.090 0.18

Fig. 3. Experimental setup showing “fixed” and “floating” magnets
during measurements, in the: (a) – “near” region, (b) – “far” region;
the photos show typical arrangement with 1+1 magnets N35 R =

8.5mm, L = 5mm

using several values from various calculations is more
meaningful when assessing the performance of analytical
equations.

3.2 Description of experimental setup

Several magnet assemblies (Tab. 1) were used to in-
vestigate relatively wide range of grades, radii, aspect ra-
tios, as well as: magnet volumes, energy and forces, with
the latter three quantities spanning across three orders of
magnitude. The photos of each type of magnet are shown
in Fig. 2. Longer assemblies were made by stacking several
magnets together, and the combined length represented
the total length L of such assembly.

For small distance (large force), the bottom “fixed”
magnet was rested against the wooden table (Fig. 3), and
a transparent pipe was used to constrain the “floating”

magnet, which was loaded with additional non-magnetic
weights to reduce the floating distance and thus increase
the repelling force. In this “near” region the force was
derived from the total weight of the floating parts, by

using the gravity G = 9.81m/s
2
. The distance was mea-

sured with a non-magnetic calliper (the one pictured in
Fig. 2), but the practical resolution was limited to around
0.5 mm because of measuring through the pipe wall. Each
pipe had a slightly larger diameter than the given mag-
net type so that the friction was minimized, an approach
similar to that used in [9].

For large distance (small forces), the bottom magnet
was put on a separating block (50 mm thick), on an
electronic balance with 0.01 g resolution. Some compo-
nents inside the balance (batteries) contained ferromag-
netic metals and could affect the readings, so the separat-
ing block reduced the errors to less than the measurable
0.01 g resolution.

Because the floating magnet was suspended much far-
ther above the fixed magnet, any additional force acting
directly on the balance was also negligible. The same plas-
tic tube was used to provide axial alignment, but it was
suspended just above the fixed magnet so that there was
no impact on the weight measured by the balance (eg by
accidental touching). Sticky tape (0.04 mm thick) was
used to suspend the floating magnets.

In the “near” region the measurement were expected
to be “noisy” due to the unknown effect of friction. How-
ever, in the “far” region the measurement can be deemed
to be more precise, because the force was measured di-
rectly by the balance. The free-floating distance for a
given magnet dictated the transition between the “near”
region (just more weights added), and the “far” region
(suspend the magnet and move it higher).

4 Comparison of results

For brevity, only a comparison of the extreme cases
of aspect ratio for each type of magnet is included below,
because for the intermediate values (which were also mea-
sured) the behaviour fell between the extremes reported
herein.

4.1 NdFeB, N35, R = 8.5mm, L = 5mm, a = 0.59

As expected, the simplest curve Castaner gives results
which are only reasonable for large distances, but diverges
to infinity near zero (Fig. 4), and errors are begin to grow
quickly for x < 10L. Similar behaviour is for Furlani,
albeit with a slower divergence. For this relatively small
aspect ratio Cheedket only works well for large distances,
but fails to predict a correct value of force at x = 0 and
it becomes even worse for lower aspect ratios, as shown
in the following subsections.

The new equation produces reasonable values over the
whole range, and being based on Furlani, it converges to
the 1/x4 slope, together with Castaner, Furlani, Cheed-
ket, FEM, and Supermagnete.
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Fig. 4. Comparison for NdFeB, N35, R = 8.5mm, L = 5mm,
a = 0.59, for curves (top and middle) and contact force (bottom);
the curves are split over two graphs for better clarity, and the insets
show the same data but with linear rather than logarithmic scales

Fig. 5. Comparison for NdFeB, N35, R = 8.5mm, L = 40mm, a =
4.7

Schomburg provides reasonable approximation for large

forces, but only after furnishing it with the F0 and de
values from K&J . It fails completely at large distance as

could be expected. Both K&J and Supermagnete agree

very well with each other for small distances, but K&J

underestimates force at large separation, and thus fails

to converge to Castaner.

Agashe and Vokoun overestimate the contact force, as

compared to all others. Cheedket reports the lowest value,

due to low aspect ratio. The contact force for new agrees

reasonably with K&J , Supermagnete, and FEM.

The measured force follow the expected curve shapes,

tending to some limited value (but not possible to mea-

sure at exactly x = 0 with the employed setup), and for

large distances also approaching the asymptote, confirm-

ing that the point-like dipole approximation with (1) is

correct at large distances.

For sake of clarity and compactness, curves Furlani

and Schomburg are omitted in the next graphs, but Cas-

taner is used as the asymptote for large distances.

4.2 NdFeB, N35, R = 8.5mm, L = 40mm, a = 4.7

For this larger aspect ratio, Cheedket overestimates

the contact force (as compared to K&J , Supermagnete

and FEM), and K&J again underestimates failing to ap-

proach the asymptote (Fig. 5). The Cheedket, new, and

measured curves approach the Castaner limit. Again, con-

tact forces of Agashe and Vokoun are higher than others.

4.3 NdFeB, N35, R = 9.75mm, L = 0.5mm, a = 0.051

For such a small aspect ratio (Fig. 6), Cheedket

severely underestimates the contact force, even reducing

as x approaches zero, which clearly does not reflect the

shape of a force curve between real magnets. Compared

to K&J data at small distances, the new prediction is

least incorrect.

Fig. 6. Comparison for NdFeB, N35, R = 9.75mm, L = 0.5mm, a =

0.051
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It should be noted that for large distances, the mea-
sured values begin to follow a slope which is parallel to the
Castaner limit, but visibly lower. This indicates that the
real magnetic dipole moment is lower that the assumed
ideal, which can be expected for such flat magnets. Their
thickness was only 0.50 mm, but if they were coated with
0.03 mm on each side this constitutes over 10% change
in the magnet volume (first contribution to lower forces)
and unknown amount of “short- circuiting” of magnetic
flux around the magnet (another contribution to lower
forces).

For such small aspect ratio, Agashe reports much
higher contact force, but the approximated Vokoun is
severely affected.

4.4 NdFeB, N52, R = 12.25mm, L = 20mm, a = 1.6

These were the highest-energy magnets used in this
study. Throughout the range, but especially at large dis-
tances (Fig. 7) the measured values are significantly lower
than the expected ideal limit.

Fig. 7. Comparison for NdFeB, N52, R = 12.25mm, L = 20mm, a =
1.6

These magnets have rounded corners, see also Fig. 2(c),
which must contribute to the real forces being lower.
However, the author suspects that the magnets had lower
grade than the advertised N52 (possibly even below N35),
and this is a possibility, since they procured from an in-
ternet shop.

Again, Cheedket clearly overestimates the curve for
smaller distances, but new conforms better to K&J , Su-
permagnete, and FEM.

4.5 Ferrite, Y10, R = 2.5mm, L = 3mm, a = 1.2

This configuration resulted with the lowest forces. Be-
cause of the ferrite material it was not possible to get the

values for K&J , Supermagnete, and Dura, Fig. 8. There-

fore, the only reference was provided by FEM, with which

the measured and new curves agreed quite well, especially

away from direct contact.

Fig. 8. Comparison for ferrite, Y10, R = 2.5mm, L = 3mm, a =
1.2

4.6 Ferrite, Y10, R = 2.5mm, L = 24mm, a = 9.6

With a longer ferrite magnet assembly, Vokoun value

changes from being lower than Agashe (Fig. 8) to being

highest of all (Fig. 9). Other values follow similar trends

as in Fig. 8.

Fig. 9. Comparison for ferrite, Y10, R = 2.5mm, L = 24mm, a =

9.6
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Fig. 10. Comparison for SmCo, XG30, R = 1.5mm, L = 5mm, a =
3.3

Fig. 11. Comparison for SmCo, XG30, R = 1.5mm, L = 25mm, a =
17

4.7 SmCo, XG30 2:17, R = 1.5mm, L = 5mm, a = 3.3

The SmCo magnets were chosen to have a large as-
pect ratio. They had relatively high energy (grade XG30)
but their small volume resulted in small forces (Fig. 10).
Again, not being NdFeB magnets it was not possible to
obtain the forces for K&J , Supermagnete, and Dura.

4.8 SmCo, XG30 2:17, R = 1.5mm, L = 25mm, a = 17

Because of the slender shape, using the same magnets
in a much longer configuration did not significantly in-
crease the forces acting in the short range (Fig. 11, as
compared to Fig. 10). However, the length of the dipoles
was increased and thus it was more difficult to approach
the Castaner limit, because much larger distances would
be required (and which extended beyond the capability
of the measurement setup). Vokoun significantly overes-
timates the contact force.

5 Summary and conclusions

There are significant discrepancies between the force
values provided by the manufacturers and suppliers of
magnets, those computed by numerical methods such
as FEM, and those calculated by closed-form analytical
equations. Therefore, it is not possible to provide an ab-
solute reference which can be used under all conditions.

However, the performance of analytical curves and an-
alytical equations for contact force values can be judged
on their qualitative behaviour over a wide range of input
values. The approximations via magnetic dipoles Cas-

taner, (2) or surface charges Furlani (3), diverge to in-
finity for zero separation between magnets. Equation (4)
(Cheedket) behaves less incorrectly, providing some value

of contact force, but it overestimates the values for large
aspect ratio (“long” magnets) and severely underesti-
mates the contact force for small aspect ratio (coin-like
“flat” magnets).

Equation (5) (Schomburg) gives reasonable curve fit-
ting, but only for small distances, and is inherently un-
able to provide a priori the contact force value, unless real
measurements are made, or other calculations are made
first.

The new proposed analytical closed-form equation (6)
is relatively simple because it is directly based on (3)
(Furlani). It is not derived in any strict way, but it pro-
vides the most reasonable approximation as compared
to the reference data of measurements and FEM simu-
lations, over the entire studied range of values: separa-
tion distance, magnet volume and aspect ratio, as well as
forces.
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