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A fundamental approach: E-polarized electromagnetic
wave diffraction by two dimensional arbitrary-shaped

objects with impedance boundary condition

Vasil Tabatadze1 , Kamil Karaçuha2∗ , Revaz Zaridze3 ,
Eldar Veliyev4 , Ertug̃rul Karaçuha1

In the present study, a new methodology in computational electromagnetics is developed for two-dimensional arbitrarily-
shaped objects with impedance boundary conditions. The proposed approach investigates the E-polarized electromagnetic
diffraction by a two-dimensional object with the Leontovich boundary condition. The scattered electric and magnetic fields
are expressed as the convolution integral of the corresponding Green’s function and the current induced on the obstacle
surface. After obtaining integral equations by applying the boundary condition, the integral equations are solved as in the
case of the method of auxiliary sources (MAS) which is a well-known method in computational electrodynamics. The results
are compared with first, different methods such as the method of moments (MoM), orthogonal polynomials (OP), and
second, different boundary conditions such as Dirichlet, Neumann, and fractional boundary conditions. Some results are also
obtained for the different shape scatterers at some values of the surface impedance.
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1 Introduction

Electromagnetic scattering by the scatterers with the

impedance boundary conditions has crucial importance

compared to the Dirichlet and Neumann boundary condi-

tions since the limit cases of the impedance boundary con-
dition may cover the aforementioned boundary conditions

and between. In other words, the impedance boundary

condition describes the real, conducting, lossy objects. In

the literature known to us, it has been observed that the

electromagnetic scattering problems with the impedance

boundary condition in generals deal with particular ge-

ometries. The main aim of this study is to generalize the
solution for any kind of geometries in 2D.

In the present study, a general approach for E-polarized

electromagnetic diffraction by two-dimensional arbitrary-

shaped objects with impedance boundary conditions us-

ing dyadic Green’s function and Leontovich boundary
condition is developed. The details of the mathematical

formulations are provided in the appendix. The main ad-

vantages of the method are first to employ an integral

equation approach by deploying the boundary conditions

and second to obtain a compact expression for field com-

ponents by using dyadic Green’s function and most im-
portantly to be valid for arbitrary-shaped objects. Later,

the integral equation is solved as it has been done in MAS

by shifting the current densities from the actual physical

surface to an auxiliary surface to avoid the singularity

problem [1], [2]. However, it should be highlighted that
the boundary condition is satisfied on the actual surface.

To investigate various theoretical or practical sur-
faces, different boundary conditions have been proposed
in the literature such as perfect electromagnetic conduc-
tor, impedance, sesquilinear, Dirichlet, Neumann, and
fractional boundary conditions [3-6]. By defining the ap-
propriate and legitimate boundary conditions for electro-
dynamic phenomena, the class of problems is enlarged
not only in scattering theory but also, antenna, and mi-
crowave component designs. In the literature, there are
numerous studies regarding electromagnetic scattering in-
cluding impedance boundary conditions [6-10]. In these
problems, flat surfaces with impedance or resistance val-
ues were investigated with different methodologies re-
garding the strip, slotted cylinder, and disk. In gen-
eral, high-frequency asymptotics was employed to solve
such kind of problems. Besides, circular geometries with
impedance boundary conditions were also investigated by
using the periodicity in angular directions [11-14]. The
advantage of the proposed method is that the approach
allows for the investigation of the diffraction by arbitrary-
shaped objects with impedance boundary conditions.

Two-dimensional electromagnetic scattering problems
with different boundary conditions play important role in
various areas of electromagnetic theory and applications.
First, new analytical, numerical, and semianalytical- nu-
merical methods, in general, are considered in the solu-
tion of two-dimensional electromagnetic problems [15-17].
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There are several reasons that researchers focus on the
topic such as developing faster converging numerical ap-
proaches [18-20], employing different boundary conditions
[12], [21], and proposing new mathematical perspectives
[22-25]. In [18], near-zero-index objects involved in elec-
tromagnetic problems are investigated through a novel
surface integral equation formulation. Also, smoothing
canonically parametrized contours for super-algebraically
convergent algorithms is analyzed in [19]. Besides, the
two-dimensional geometries intensively are studied not
only for clarifying how the proposed methodologies’ con-
vergence is faster but also they are investigated how the
electromagnetic wave behave in the vicinity of different
boundary conditions or medium and resonances, reflec-
tions and radar cross section in such scenarios are exam-
ined [5], [12], [21]. In addition to these aforementioned
reasons, two dimensional electromagnetic problems yield
to develop or propose a novel or hybrid approaches in
time and frequency domains [23], [24].

The presented paper is an example of such an attempt.
The proposed approach considers arbitrary shape geome-
tries, has fast convergence, and generalizes the bound-
ary condition for the Method of Auxiliary sources to the
impedance boundary condition for the first time. Besides,
the proposed methodology is verified by analytical, nu-
merical, and analytical-numerical methods in the present
study.

The following sections are devoted to the mathemat-
ical formulation of the problem, numerical results, and
comparison, then the conclusion is drawn.

2 Formulation of the problem

In this section, the mathematical background of the
proposed method is provided. The scattered electric field
vector (Esc) and magnetic field vector (Hsc) are provided
as, [26], [27]

Esc(r) =

∮∮

S′

iωµJe(r
′) ·G(r, r ′)+

+Jm(r′) · ∇ × G(r, r′)ds′

Hsc(r) = −

∮∮

S′

iωεJm(r) ·G(r, r ′)−

Je(r
′) · ∇ × G(r, r′)ds′,

(1)

where, E and H stand for the total electric and magnetic
field vectors, respectively and

G(r, r′) =
(

I +
∇∇

k2

)

G(r, r′) ,

Jm(r′) = n̂× E(r′), Je(r
′) = n̂×H(r′).

Here, G and G are the dyadic and scalar Green’s func-
tion, respectively, Jm(r

′) and Je(r
′) are magnetic and

electric current densities on the scatterer surface. Be-
sides, (r, r ′) correspond to the observation and the source
points, respectively in general, also n̂ stands for the nor-
mal unit vector of the scatterer surface, ω is the angular
frequency, time dependency is given as e−iωt and finally,
ε and µ are permittivity and permeability of the cor-
responding region. The general form of the Leontovich
boundary condition is provided [12], [28]:

Et = ζSHt × n̂ , (2)

where Et and Ht stand for the tangential components of
the electric and magnetic fields, and ζs = R + iX is the
effective surface impedance with resistivity (R) and the
the effective (X) reactance, respectively.

For two-dimensional E-polarized cases Je has only z-
component and Jm becomes zero. We express the tan-

gential unit vectors of the scatterer as t̂⊥ and t̂‖. Then,
for this specific case, the scattered fields can be expressed
as

Esc(r) =

∮∮

S′

iωµ Je(r
′)G(r, r ′) · t̂⊥(r

′)ds′,

Hsc(r) =

∮∮

S′

Je(r
′)∇×G(r, r′) · t̂⊥(r

′)ds′,

(3)

where Je(r
′) = Je(r

′)t̂⊥(r
′).

Here, G(r, r′) = −
i
4H

(1)
0 (r, r′), H

(1)
0 (r, r′) is the

Hankel Function of the first kind and zero-th order.

Using (2), the tangential components of E and H-fields
can be found

E⊥(r) =
∮∮

S′

iωµJe(r
′)G(r, r′) · t̂⊥(r

′)ds′ +Einc(r) · t̂⊥(r),

H‖(r) =
∮∮

S′

Je(r
′)∇×G(r, r′) · t̂⊥(r

′)ds′ +Hinc(r) · t̂‖(r).

(4)

Here, Einc , Hinc are incident field components. It should

be highlighted that E(r) · t̂‖ = 0 and H(r) · ŷ⊥ = 0

since we investigate E-polarized diffraction by a two-
dimensional object. Then, the boundary condition given
in (2) is applied and the following equations are obtained

E⊥(r) = ζSH‖(r). (5)

This integral equation is converted into a system of lin-
ear algebraic equations (SLAE) as below (replacing the
integrals by summation)

n
∑

j=1

(

Aij − ζsBij

)

Je(r
′
j) = Ci, (6)
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Fig. 1. The normalized electric field distributions for perfect magnetic conductor circular cylinder θ0 = π, k = 4, a = 1: (a) – analytical
result, and (b): ζs = 1000 × 120π
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Fig. 2. The normalized electric field distributions for perfect electric conductor circular cylinder θ0 = π, k = 3, a = 1: (a) – (MoM), and
(b): ζs = 0
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Fig. 3. The normalized electric field distributions for a circular arc with fractional boundary condition, θ0 = 0, k = 2.3, a = 1, and
aperture size = π/3; (a) – fractional order is 0.5 and (b): ζs = −i120π
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Fig. 4. The normalized electric field distributions for a circular arc with fractional boundary condition, θ0 = π/2, k = 3.9, a = 1, ζs =
−i120π and fractional order is 0.5
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Fig. 5. The normalized electric field distributions for double strips with ζs = −i120π and (a): θ0 = π/2, k = 4, a = 2, b = 0.5, and
elliptical cylinders (b): θ0 = 0, k = 3, a = 1, b = 1.5
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Fig. 6. The normalized electric field distributions for Cassini Oval Shaped Cylinders, [34],with θ0 = π/2, k = 3, a = 1, b = 1.1, and
(a): ζs = −i120π , (b): ζs = (0.4− i10)120π
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Fig. 7. Normalized total radar cross section for OP and proposed
approach; θ0 = 0, perfect electric conducting surface, a = 1,

aperture size = θ/3

where

Aij = iωµG(ri, r
′
j) · t̂⊥(r

′
j) · t̂⊥(ri),

Bij = ∇×G(ri, r
′
j) · t̂⊥(r

′
j) · t̂‖(ri),

Ci = ζsHinc(ri) · t̂‖(ri)−Einc(ri) · t̂⊥(ri) .

It should be highlighted that the integral equation is
solved by MAS where the induced current density is
shifted from the actual surface to the auxiliary surface.
Then, fast convergence is guaranteed and the singularity
problems are eliminated [29]. Besides, it should be no-
ticed that the integrals in the proposed approach stand
for the closed surfaces. If it is required to investigate non-
closed circular or elliptical arcs, the surface should have a
tiny thickness compared to the electrical length and the
normal vectors of its surfaces should have opposite di-
rections on different sides. The analysis and comparison
with other approaches for this case are also provided in
the following section.

3 Numerical results and

comparison with other methods

In this part, the validation of the proposed approach
is provided by the numerical results for different geome-

tries and also, and comparisons with analytical outcomes,
MoM, and OP are done. As the incident field, an E-
polarized plane wave is considered for all numerical re-
sults. It should be noted that the angle of the incidence
is given as θ0 from the x-axis, and the radius of the cir-
cle is given as a . Since the impedance boundary condition
models the scatterer as a thin surface, the electric field
inside the object is nullified. Only the field outside the
object should be considered.

In Fig. 1, the analytical result [30] is compared for
impedance boundary conditions where the effective imped-
ance value takes huge values. As expected, the field out-
side the object matches with a very high degree of ac-
curacy. This can be thought that one limit case of the
Leontovich Boundary condition approaches the Neumann
boundary condition.

In Fig. 2, the comparison is done with MoM for the
case of perfect electric conductor surface (Dirichlet con-
dition for E-polarized case). The deviation from MoM is
less than 3%, [31].

In Fig. 3, the comparison is done for a non-closed cir-
cular arc. In Figure 3(a), a fractional boundary condition
is employed [32]. It should be noted that, in the pro-
posed method, the thickness of the circular arc is taken
as 0.02 (thickness≪k). It can be easily noticed that the
resonance is observed inside the circular arc.

In Fig. 4, the comparison between the fractional
boundary condition and impedance boundary condition
is provided [33]. Here, the diffraction by the strip with
2 is investigated. The relation between the fractional or-
der and the impedance value is derived for electrically
large scatterers; therefore, the deviation in the vicinity of
the strip plane is observed, otherwise, good agreement is
observed as expected.

In Fig. 5, electromagnetic scattering from the different
geometries is provided. In Fig. 5(a), the double strip is
investigated with the length of 2a and the distance from
each other is 2l whereas, in Fig. 5(b), electromagnetic
scattering by an elliptical cylinder with radii, a and b , is
provided.

In Fig. 6, the scattering by Cassini Oval cylinders
is given for different impedance values. The impedance
value on the surface changes the field distribution, dras-
tically.
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In Fig. 7, the total radar cross-section (σT ) analy-
sis of circular non-closing arc is investigated (we should
specify the impedance value). In the figure, the compar-
ison is done with OP, see Fig. 3 for the geometry, [12].
The resonance wavenumbers for closed circular cylinders
are at Bessel’s function zeros for the Dirichlet boundary
condition. Since the circular arc has an aperture, the de-
viation from the zero of the Bessel function is expected.
The deviation between the two methodologies is because
the proposed approach solves the geometries with finite
thickness whereas OP deals with obstacles with infinites-
imal thickness. Therefore, when the frequency increases,
the deviation is noticeable.

4 Conclusions

In the present study, two-dimensional electromagnetic
diffraction by impedance surfaces with finite thickness for
an E-polarized case is investigated by proposing a new
mathematical approach. The advantages of the proposed
approach are that the method can be employed for any
two-dimensional geometries with impedance boundary
conditions and the mathematical derivation and formula-
tion are compact and neat since the dyadic Green’s func-
tion is employed. The comparisons regarding the method-
ologies are done with analytical results, MoM, OP. Be-
sides, limit cases of the Leontovich boundary condition
and the comparison with fractional boundary condition
yield that, the proposed approach is effective and valid
for two-dimensional E-polarized scattering problems. The
results reveal that, for all cases, the deviation from the
other methods is less than 5%.

Appendix

The details on the mathematical manipulations are
provided here for readers. The distance between the ob-
servation and the source point is provided below

ρ =
√

∆x2 +∆y2 +∆z2

∆x = x′
− x,∆y = y′ − y,∆z = z′ − z

Since we are involved in a two-dimensional problem,
Green’s function is the Hankel function of the first kind

due to e−iωt . Then, nine components of G(r, r′) in (6)
are – for brevity, the argument of Hankel functions (kρ)
was omitted

Gxx =
i

4

(

−H
(1)
0 +

1

kρ
H

(1)
1 −

∆x2

ρ2
H

(1)
2

)

,

Gyy =
i

4

(

−H
(1)
0 +

1

kρ
H

(1)
1 −

∆y2

ρ2
H

(1)
2

)

,

Gzz = −
i

4
H

(1)
0 , Gxy = Gyx =

i

4

∆x∆y

ρ2
H

(1)
2

Gxz = Gzx = Gyz = Gzy = 0

Since we have a two-dimensional problem, the change
in the z -direction is zero.

Then the nine components of tensor ∇×G are given
by the following matrix















0 0
∂Gxz

∂y

0 0 −
∂Gzz

∂x
∂Gyx

∂x
−

∂Gxx

∂y

∂Gyy

x
−

∂Gxy

y
0















where

∂Gxy

∂y
−

i

4
∆x

[

H
(1)
2

∆y2 −∆x2

ρ4

− k
∆y2

ρ3

{

2H
(1)
2

kρ
−H

(1)
3

}

]

,

∂Gyx

∂x
=−

i

4
∆y

[

H
(1)
2

∆x2 −∆y2

(ρ)4

− k
∆x2

(ρ)3

{

2H
(1)
2

kρ
−H

(1)
3

}

]

,

∂Gzz

∂x
=

∂Gyy

∂x
= −

ik

4

∆x

ρ
H

(1)
1 ,

∂Gxx

∂y
=

∂Gzz

∂y
= −

ik

4

∆y

ρ
H

(1)
1 ,
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[6] K. Karaçuha, V. Tabatadze, Ö. F. Alperen, and E. Veliev, “A

new approach in electromagnetic plane wave diffraction by two

concentric slotted cylinders with variably placed slits: E and H

polarized cases”, IET Microwaves, Antennas Propag., May 2022,

doi: https://doi.org/10.1049/mia2.12252.

[7] T. L. Zinenko, A. I. Nosich, and Y. Okuno, “Plane wave scat-

tering and absorption by resistive-strip and dielectric-strip peri-

odic gratings”, IEEE Trans. Antennas Propag., vol. 46, no. 10,

pp. 14981505, 1998.

[8] M. Lucido, F. Schettino, and G. Panariello, “Scattering from a

thin resistive disk: A guaranteed fast convergence technique”,

IEEE Trans. Antennas Propag., vol. 69, no. 1, pp. 387396, 2020.



Journal of ELECTRICAL ENGINEERING 73(2022), NO6 431

[9] G. I. Koshovy, “Mathematical models of acoustic wave scattering

by impedance strip”, XXII-nd International Seminar/Workshop

on Direct and Inverse Problems of Electromagnetic and Acoustic

Wave Theory (DIPED), 2017, pp. 7174.

[10] E. I. Veliev, T. Tsushima, K. Kobayashi, and S. Koshikawa,

“Scattering by a strip with two different surface impedances”,

International Symposium on Electromagnetic Compatibility

(IEEE Cat), No. 99EX147, pp. 280283, 1999.

[11] A. Buyukaksoy and G. Uzgoren, “Diffraction of high-frequency

waves by a cylindrically curved surface with different face

impedances”, IEEE Trans. Antennas Propag., vol. 36, no. 5,

pp. 690695, 1988.
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“A novel surface-integral-equation formulation for efficient and

accurate electromagnetic analysis of near-zero-index structures”,

J. Opt., vol. 24, no. 3, pp. 35601, 2022.

[19] Y. A. Tuchkin, F. Mazlumi, E. Sever, and F. Dikmen, “Contour

Smoothing for Super-Algebraically Convergent Algorithms of 2D

Diffraction Problems”, IEEE Trans. Antennas Propag., 2022.

[20] T. Og̃uzer and D. Kutluay, “A Novel Impedance Matrix Local-

ization For The Fast Modeling of 2D Electromagnetic Scattering

Using The Localized Greens Function”, 2019 19th International

Symposium on Electromagnetic Fields in Mechatronics, Electri-

cal and Electronic Engineering (ISEF), pp. 12, 2019.

[21] H. D. Basdemir, “Wave scattering by a perfect electromagnetic

conductor wedge residing between isorefractive media”, Prog.

Electromagn. Res. M, vol. 94, pp. 3139, 2020.
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