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COMMUNICATIONS

Run length limited CCSDS convolutional
codes for optical communications

Peter Farkaš1,2 , Ladislav Divinec1 , Martin Rakús1

This paper presents the construction of RLL-ECCs (run length limited error control codes) from three selected ECCs
specified by Consultative Committee for Space Data Systems (CCSDS) for optical communications. The RLL-ECCs obtained
present a practical alternative to CCSDS codes with pseudo-randomizers. Their advantage is that the maximal run lengths
of equal symbols in their codeword sequences are guaranteed, which is not the case if the common approach with pseudo-
randomizers is used. The other advantages are that no additional redundancy is introduced into encoded codewords and that
the encoding and decoding procedures of the original error control CCSDS codes do not have to be modified in the following
cases: Firstly, if hard decoding is used and the transmission channel can be modeled as a BSC (binary symmetric channel)
and secondly, if soft decoding and coherent BPSK (binary phase shift keying) modulation is used and the appropriate
transmission channel model is an AWGN (additive white Gaussian noise) channel.
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1 Introductioon

The construction of codes adapted to different practi-
cal requirements can be traced back to the times when
different line codes were proposed empirically based on
experience. The Morse alphabet is probably the first code
which was constructed taking into account the practical
requirements or constraints of telegraphy channels at that
time [1]. Later, after Shannon established Information
Theory[2], more advanced codes for constrained channels
and memory systems were developed step by step [3-9].

Simply expressed, in the digital domain, the purpose
of these codes is to convert any sequence of symbols
from some source into a sequence which satisfies the con-
straints of practical transmission channels or storage sys-
tems. These constraints stem from different practical re-
quirements and goals. For example, the synchronization
of the receiver could be supported by sufficient changes in
transmitted signals. This could be satisfied by RLL codes,
which form a subset of constrained codes. RLL codes are
distinguished by the property that the runs of identical
consecutive symbols are limited.

In practical up-to-date communications and storage
systems the constrained codes are mostly used together
with ECCs. The purpose of ECCs is to decrease the error
probability in the payload information after its decoding.
However, there is a fundamental problem of how to order
the constrained codes and ECCs in cascade. The ques-
tion is which code should be the inner code and which

the outer. It stems from the fact that constrained codes
are not suitable for error prone channels. In theory it is
supposed that the constrained channels for which they
are used are error free [10]. In practice this assumption
is not true and therefore ECCs are often used as inner
codes. In this case the black box containing them and the
real channel could be approximated in some cases as er-
rorless. But the ECCs are not constructed with the goal
to fulfill the constraints of the channels. From this point
of view it seems that the last encoder and the first de-
coder connected to the real channel with constraints (the
inner code) should be the constrained code and not the
ECC.

One approach to overcoming this problem with order-
ing the codes in cascade, at least for cascading RLL and
ECCs, is to construct combined codes denoted as RLL-
ECCs [11-23], which have RLL and error control proper-
ties simultaneously. Recently RLL-ECCs were obtained
from 5G LDPC (low density parity check) codes, [11]. The
question arose if a related construction technique could be
applied also to other standardized codes, for example to
some of the CCSDS codes in order to obtain RLL-ECCs.
In this paper it is shown that it is possible, at least for
three Convolutional codes specified by CCSDS for optical
communications in [24]. The obtained RLL-ECCs could
be of interest for practical applications in space explo-
ration.

We describe the relevant CCSDS convolutional codes
and introduce the method for obtaining RRL-ECCs and
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some comments on its advantages as well as the obtained

RLL-ECCs from the three CCSDS codes are presented.

2 Convolutional codes for

optical communications

recommended by ccsds 142.0-b-1

We present the basic information about binary con-

volutional CCSDS codes [24] for optical communications.

The mother code of these codes is given by its generators

over GF(2) (finite field with two elements).

g1(x) = x2 + 1,

g2(x) = x2 + x+ 1,

g3(x) = x2 + x+ 1.

(1)

The corresponding encoder is depicted in Fig. 1. In

one cycle the number of bits is k = 1 and n = 3 which

are inputted and outputted respectively. Therefore, the

code rate R = k/n for this mother code is 1/3. Using

the puncture patterns given in Tab. 1 rate 1/2 or rate

1/3 code could be obtained.

Fig. 1. The mother binary Convolutional Code recommended in[8]
by CCSDS for optical communication systems

Table 1. Puncturing patterns for binary convolutional codes rec-
ommended in [24]

Convolutional encoder

Code puncturing patterns

rate P0 P1 P2 P3 P4 P5

1/3 1 1 1 1 1 1

1/2 1 1 0 1 1 0

2/3 1 1 0 0 1 0

3 RLL-ECCs obtained from convolutional

codes for optical communications

recommended by CCSDS 142.0-B-1

The method for obtaining an RLL-ECC from a binary

ECC is illustrated in Fig. 2 for hard decoding and for

transmission via BSC.

Fig. 2. The principle of how a binary ECC can be modified in order
to get RLL properties without additional redundancy and without
the need to change its encoding and hard decoding algorithms in

BSC

The payload information is first encoded via the stan-
dard ECC into a codeword and punctured if required. In
the following step some symbols are inverted by adding
modulo two (mod 2) by a so-called modifier. For a convo-
lutional code the modifier is a theoretically infinite binary
sequence. On the receiving side, before the received sym-
bols are inputted to the decoder, the modifier adds mod
2 to them in order to eliminate the influence on decoding
from the operations made at the transmitting side.

The method illustrated in Fig. 2 has the following
advantages:

• The problem with ordering ECC and translation codes
mentioned in section 1 of this manuscript is overcome.

• No additional redundancy is introduced. The practical
implementation has low complexity.

• The encoding and decoding of the original ECC does
not have to be modified in cases where some round
conditions are valid.

• The maximal run length Lmax is guaranteed, which is
not the case if scramblers are used.

The first three advantages are obvious. The 4-th ad-
vantage will also remain valid if soft decoding, coherent
BPSK modulation is used and the channel can be mod-
eled as an AWGN channel, [25].

The main problem which has to be solved before the
method could be applied in practice is to find a modi-
fier which will decrease the otherwise infinite run lengths
in the codeword sequence of the original ECC. There
are different approaches known regarding how to find a
modifier[11-23] based on the structural properties of the
original ECCs.

In this letter a simple greedy computerized search ap-
proach was used for obtaining RLL-ECCs from the con-
volutional codes standardized in[23]. The goal was to find
positions of inversions in convolutional codewords which
will decrease the run lengths of equal symbols in them.
Observing the encoder in Fig. 1 the following Tab. 2 can
be obtained, which contains in compact form the informa-
tion which a codeword frame can follow after each code-
word frame.
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Table 2. Ordering of codeword frame in two consecutive time slots
for mother binary convolutional code with coderate 1/3

Branch in time slot

j j + 1

000 111 100 000 011

011 100 111 011 000

100 000 111 011 100

111 100 011 000 111

Table 3. Ordering of codeword frame in two consecutive time slots
for mother binary convolutional code with coderate 1/3

Branch in time slot

j j + 1

010 101 110 010 001

000 111 100 001 010

110 010 101 001 110

101 110 001 010 101

Table 4. Obtained results for the selected convolutional codes for
TM space data link protocol specified by CCSDS, according to [12]

CCSDS Symbols inverted

code rate
Lmax

by modifier

1/3 3 2-nd symbol in every frame

1/2 8 1-st symbol in every second frame

2/3 12 1-st symbol in every fourth frame

After a search in the window containing two codeword
frames it was found that it is possible to invert the sec-
ond symbol in each frame by the addition of a modifier
in order to use the method depicted in Fig. 2. After this
modification, the information about consecutive branches
is presented in Tab. 3, where the inverted values are un-
derlined. Analyzing Tab. 3 it is obvious that after modi-
fication the mother convolutional code will have Lmax .

For the two convolutional codes with coderate 1/2
and 2/3 obtained from the mother code with coderate
1/3 by the puncturing specified in [24] the computer-
ized search was used in order to find the positions of
inversions which would decrease Lmax . The computer-
ized search had two phases. In the first phase a search
window was chosen, which contained all possible paths
composed of 10 branches from all states. In other words,
the search window Lws was 10n0 bits long. Then for each
path all possible modifiers were tried and the resulting se-
quence was analyzed in order to find Lmax in it. For each
path and modifier, the Lmax was recorded. At the end of
the first phase the candidate patterns were ordered from
best (leading to a minimal value of Lmax ) to the worst.
In the second phase the selected inversion patterns from
the first phase were tested starting from the best one.
In contrast to the first phase, now all paths containing
20 branches were tested after they had been modified by

the particular candidate inversion pattern. The resulting
sequence was then analyzed on the maximal run-lengths
which it contained. If the maximal run-length was higher
than expected, the candidate inverting pattern was dis-
carded and the next one was tested. This was done until
some small value of L′

max
was found. The corresponding

modifier was also stored.

Note 1. It is obvious that the numberN of these possi-
ble modifiers increases exponentially with the number of
symbols in the window Lws , namely N = 2Lws .

Therefore, the chosen value of Lws in the described
computerized search is restricted by the computing power
which is at the disposal for running it.

Let us now concentrate our attention on the CCSDS
convolutional code with coderate 1/2 obtained by punc-
turing each third symbol of each branch in the mother
CCSDS convolutional code.

After the first computerized search phase it was found
that inverting the first symbol in every second codeword
frame will lead to Lmax = 8. The verification in the
second phase did not find any run length which was longer
than 8.

The computerized search for a modifier with a small
value of Lmax for a CCSDS convolutional code for optical
communications with coderate 2/3 revealed that invert-
ing every first symbol in every fourth frame will lead to
Lmax = 12. The test in the second phase did not find any
run length longer than 12.

The results are presented in Tab. 3. in a compact form.
There is also information as to which symbols in which
codeword frames of a concrete convolutional code have to
be inverted by a modifier.

Note 2. The search revealed more different modifiers,
which lead to the same value of Lmax for convolutional
codes with coderate 1/2 and 2/3. However, only one of
them was selected for publication in Tab. 3 - specifically
for each code which seemed to the authors to have the
simplest implementation rules.

3 Conclusions

In this paper it was shown that RLL-ECC codes could
be obtained from the convolutional codes specified by
CCSDS in [24] using the method with modifiers. The
main advantages of these codes are that the run lengths
of equal symbols are restricted to corresponding values
with a guarantee, that no additional redundancy has to
be introduced in encoding, and that the encoding and
decoding of the original error control codes specified by
CCSDS do not have not to be modified.

It is also possible that future research can bring new re-
sults with lower values of Lmax , even for some of the three
codes presented in this paper. The reason is that a, brute
force or greedy search for modifiers minimizing Lmax in
convolutional codes specified by CCSDS can bring further
progress if the search is made in larger search windows.
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[16] P. Farkaš and H. Weinrichter, “Transcontrol Codes with Run-
Length Limitation”, in AEU Int. J. Electron. Commun., vol. 50,

no. 6, pp. 353356, 1994.
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