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COMMUNICATIONS

New application of the key term separation principle

Jozef Vörös1

The paper deals with a new application of the key term separation principle in identification of nonlinear dynamic systems.
A multiplicative form of this operator decomposition technique is proposed and applied to the Wiener model. The resulting
mathematical model is linear in both the linear and the nonlinear block parameters. Illustrative examples are included.
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1 Introductioon

The approaches dealing with nonlinear systems are
generally restrictive in assumptions and applicable to spe-
cial classes of systems only. In the case of nonlinear block-
oriented systems with expected compound operators the
main problem is caused by the mathematical tractabil-
ity of descriptions given by the composition of mappings
or operators f = f1 o f2 o ... o fn, where fi describes the
behavior of ith block. These can be hardly used in their
analytic form, and we are usually forced to use appropri-
ate approximations and/or simplifications.

The decomposition technique based on the applica-
tion of the so called ”key term separation principle” offers
an interesting possibility how to cope with such complex
systems and was introduced by the author in [1]. The
proposed technique enables to decompose a compound
mapping leading to n equations exhibiting special quali-
ties, which can be useful for iterative and recursive algo-
rithms of identification and control, as well. In the sim-
plest case of the Hammerstein and Wiener systems, where
f = f1 o f2, the mathematical model consists of two equa-
tions and the inner mapping is included into the modified
outer mapping both implicitly and explicitly.

In the previous works of the author the additive form
of decomposition has led to new descriptions for the block
oriented nonlinear models of Hammerstein and Wiener
types with different types of both static [2] and dynamic
nonlinearities [3] and the resulting model descriptions
were nonlinear-in-variables, but linear-in-parameters and
the identification problem turned to a quasi-linear one.
Moreover, the key term separation principle was success-
fully applied in a large number of publications dealing
with modeling and identification of nonlinear dynamic
systems, see eg [4-12]. However, the key assumption in
the case of Wiener models might be too restrictive in
some cases.

In this paper a multiplicative form of compound op-
erator decomposition is presented with the aim to over-
come the mentioned problems. In the following a brief ac-

count is devoted to the above-mentioned decomposition
technique and an appropriate form is introduced for the
multiplicative case of decomposition. Then the proposed
decomposition is applied to the Wiener model leading to
a special form of model where both the linear and the
nonlinear block descriptions appear in the resulting ex-
pression in unmodified form. Hence the decomposition is
leading to a “parsimonious” model with the least possible
number of parameters to be estimated. An iterative algo-
rithm for estimation of the Wiener model parameters is
proposed and its feasibility is illustrated by two examples.

2 Key term separation principle

Let f, g and h be mappings defined on nonempty sets
U, X, and Y

f : U → X, g : X → Y, (1,2)

h = g o f : U → Y, (3)

ie for every u ∈ U, x ∈ X, y ∈ Y

y = g(x) = g[f(u)] = h(u), (4)

x = f(u). (5)

Assume the mapping g can be decomposed, ie splitted
and uniquely replaced by two mappings

a : X → Y, b : X → Y, (6,7)

as ab. Then the mapping g can be defined on the Carte-
sian product of two identical copies of X,

g = ab : X ⊗X → Y. (8)

The replacement of the original domain set by the
Cartesian product of the same sets is correct, it does not
change the set topology and generally does not require
any assumptions or restrictions. Now we can apply the
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decomposition (8) to the outer mapping g in the com-
pound mapping (3) and the inner mapping f substitute
explicitly only once. This gives

h = (a o f)× b : U ⊗X → Y, (9)

where the domain of compound mapping is now the
Cartesian product U ⊗ X. Then (4) defining the given
compound mapping can be rewritten as

y = g(x) = (a o b)(x) = a[f(u)] o b(x) = G(u, x), (10)

and it will be valid on the sets U,X, and Y (or on the ap-
propriate subsets of given mappings’ domains). Hence the
original compound mapping (3) can be replaced by the
couple of mappings (1) and (9). It means that the original
mapping defined by the relation (4) can be described by
the couple of relations (5) and (10).

The choice of appropriate decomposition form for (8)
can simplify in some cases the complex nonlinear map-
pings and descriptions of relations in (4). An important
way of mapping decomposition is based on rewriting of
mapping into an appropriate additive or multiplicative
form, given by the sum or the product of at least two
mappings. It means that for the mapping g(.), with ar-
guments from X there will be two mappings a(.) and
b(.), such that in the additive case

g(x) = a(x) + b(x), (11)

while in the multiplicative case

g(x) = a(x)b(x), (12)

for any x ∈ X. Note that in the case of analytic mappings
these decomposition forms always exist. Let the mapping
g with domain X and range Y be decomposed into the
multiplicative form (12) as

y = g(x) =
c− x

c− x
g(x), (13)

with appropriately chosen c. In the simplest case we can
choose c = 1. Rearranging (13) gives

y = xy + g(x)(1 − x). (14)

The half-substitution of (5) into the right-hand side
of (14), ie , only for x in the first term, leads to the
expression

y = f(u)y + g(x)(1 − x), (15)

where both f(u) and g(x) appear explicitly. The original
mapping g, defined by (4), is now described equivalently
by two expressions, ie , (5) and (15), which are peculiar
to the intent that both expressions contain the same term
on the right-hand side, namely f(u). It means that the
inner mapping appears in the outer one both implicitly
and explicitly.

3 Wiener model

The Wiener model is given by the cascade connection
of a linear dynamic system followed by a static nonlin-
earity block. The difference equation model of its linear
dynamic block can be given as

x(t) = A(q)u(t) + [1−B(q)]x(t), (16)

where u(t) and x(t) are the inputs and outputs, respec-
tively, A(q) and B(q) are scalar polynomials in the unit

delay operator q−1

A(q) = a0 + a1q
−1 + · · ·+ amq−m

B(q) = 1 + b1q
−1 + · · ·+ nmq−n. (17,18)

The nonlinear block can be described by the equation

y(t) = G[x(t)], (19)

where x(t) is the input, y(t) is the corresponding output.
Hence the Wiener model is characterized by a compound
mapping from the set of model inputs u(t) into the set
of model internal variables x(t) and then into the set of
model outputs y(t).

Assume the nonlinear mapping G(.) can be approxi-
mated by the polynomial of appropriate degree

y(t) =
r

∑

k=1

gkx
k(t). (20)

After fixing g1 = 1, (20) can be rewritten as

y(t) = x(t) +
r

∑

k=2

gkx
k(t). (21)

Then choosing x(t) as the key term and substituting
(16) only for this separated x(t), the model output will
be

y(t) =

m
∑

i=1

ai u(t−i)−

n
∑

j=1

bj x(t−j)+

r
∑

k=2

gk x
k(t). (22)

Equation (22) and that of (16) defining the internal
variable x(t) represent a special form of the Wiener model
with polynomial nonlinearity where all the system param-
eters are given explicitly. The model parameter estima-
tion can be performed iteratively with internal variable
estimation [13], [14].

In the above case, the additive form of the key term
separation principle has been used. However, the as-
sumption on the description of nonlinear block might
cause problems. Specifically, fixing the parameter value
of the linear term in the polynomial approximation to
one (g1 = 1) could lead to an unwanted change of lin-
ear dynamic block gain. On the other hand, the model is
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not appropriate for polynomial characteristics with zero
linear term.

This problem can be overcome by using a multiplica-
tive form of the key term separation principle [15]. Ac-
cording to (12)-(14) the model output equation can be
written as

y(t) = x(t)y(t) +G[x(t)][1 − x(t)]. (23)

Now, after substituting (16) only for x(t) in the first
term and considering more general output equation

y(t) =

r
∑

k=0

gk x
k(t), (24)

we obtain

y(t) =

m
∑

i=1

ai u(t− i)y(t)−

n
∑

j=1

bj x(t− j)y(t)+

r
∑

k=0

gk x
k(t)[1− x(t)].

(25)

where all the parameters of both original mappings (16)
and (24) appear . The resulting equation (25) is linear
in all the Wiener model parameters; hence the parameter
estimation problem can be solved as quasi-linear one with
internal variable x(t) estimation. It is important, that
no restrictions are imposed on the model nonlinear block
parameters.

4 Estimation algorithm

As the internal variable x(t) in (25) is unmeasurable,
the model parameter estimation can be performed using
the iterative technique with internal variable estimation.
The Wiener model given by (25) can be put into a concise
form

y(t) = Φ⊤(t)Θ, (26)

where the data vector is defined as

Φ⊤(t) =
{

u(t− 1)y(t), . . . ,u(t−m)y(t),−x(t− 1)y(t),

. . . ,− x(t− n)y(t), [1− x(t)], x(t)[1 − x(t)], . . . ,

xr(t)[1 − x(t)]
}

,
(27)

and the vector of parameters is

Θ⊤ = [a1, . . . , am, bn, . . . , bn, g0, g1, . . . , gr] . (28)

As a fact, no one-shot estimation algorithm can be
applied to (26) because Φ(t) depends on an unmeasurable
variable.

The proposed iterative algorithm is based on the use
of the preceding estimates of model parameters for the

estimation of internal variable. Assigning the estimated
variable in the s-th step as

sx(t) =

m
∑

i=1

sai u(t− i)−

m
∑

j=1

sbsix(t− j), (29)

the error to be minimized is gained from (26) in the vector
form

e(t) = y(t)−s Φ⊤(t) s+1Θ, (30)

where sΦ(t) is the data vector with the corresponding

estimates of internal variable according to (29) and s+1Θ
is the (s+ 1)-estimate of the parameter vector.

The steps in the iterative procedure may be now stated
as follows

Step 1: The initial estimates are made only for the
parameters of linear block and used in (29) for the initial
estimates of internal variable.

Step 2: Minimizing an appropriate criterion (eg least
squares) based on (30) the estimates of both linear and

nonlinear block parameters s+1Θ are obtained using
sΦ(t) with the s-the estimates of internal variable.

Step 3: Using (29) the estimates of s+1x(t) are evalu-
ated by means of the recent estimates of model parame-
ters.

Step 4: If the estimation criterion is met the procedure
ends, else it continues by repeating steps 2 and 3.

Note that because of the cascade connection of two
blocks, their parameterization is not unique, as many
combinations of parameters can be found. Therefore one
parameter has to be fixed and we can assume that a1 = 1.

5 Illustrative examples

Several Wiener systems were simulated and the es-
timations of all the model parameters were carried out
on the basis of input and output records as well as the
estimated internal variables. The performance of the pro-
posed method is illustrated on the following examples.

Example 1.

The linear dynamic block of the Wiener system was
described by the equation

x(t) = u(t− 1)− 0.6u(t− 2) + 0.5u(t− 3)−

− 0.65x(t− 1)− 0.35x(t− 2)

and the nonlinear block (Fig. 1) was given as

y(t) = 0.2 + 0.8x(t) + 0.4x2(t) + 0.1x3(t)

The identification was performed on the basis of 3000
samples of uniformly distributed random inputs with
|u(t)| < 0.7 and simulated outputs. Normally distributed
random noise with zero mean and signal-to-noise ratio -
SNR = 50 (the square root of the ratio of output and
noise variances) was added to the outputs to make the
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Fig. 4. Process of parameter estimation – Example 2

simulation more realistic. The process of parameter esti-
mation is shown in Fig. 2 (the top-down order of parame-
ters is: g1, b1, a3, g2, b2, g0, g3, a2). The estimates meet
the values of real parameters after about 6 iterations.

Example 2.

The linear dynamic block of the Wiener system was
described by the equation

x(t) = u(t− 1) + 0.5u(t− 2) + 0.2x(t− 1)− 0.2x(t− 2)

and the nonlinear block (Fig. 3) was given as

y(t) = 0.1 + 0.3x2(t) + 0.6x3(t)

The identification was performed on the basis of 3000
samples of uniformly distributed random inputs with
|u(t)| < 1 and simulated outputs. Normally distributed
random noise with zero mean and signal-to-noise ratio -
SNR = 50 was added to the outputs to make the simula-
tion more realistic. The process of parameter estimation
is shown in Fig. 4 (the top-down order of parameters is:
g3, a2, g2, b2, g0, g1, b1). The estimates meet the values
of real parameters after about 8 iterations.

Although there exists no exact proof of convergence
for the utilized iterative method with the internal variable
estimation, the tests exhibited good convergence. The re-
quired accuracy of identification was reached after about
6-8 iterations.

6 Conclusions

The additive case of the key term separation princi-
ple previously used for compound mapping decomposi-
tion has been extended to the multiplicative one. The
proposed arrangement of the outer mapping and the fol-
lowing half-substitution of the inner one has led to such a
description of the compound mapping where both map-
pings appear in the original form. This has been applied
to the Wiener model and provided an output equation,
which is linear in all the model parameters. Hence the
Wiener model parameter estimation can be performed it-
eratively with internal variable estimation.

Finally note that the proposed approach can be used
for different types of nonlinearities, both static (discon-
tinuous, two segment polynomial, piece-wise linear) and
dynamic (backlash, hysteresis).
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