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Accurate sitting posture recognition plays a crucial role in improving improper postures and reducing the risk of associated 

health issues. The inherent complexity of human behavior, however, poses a great challenge to the development of a practical 

sitting posture monitoring system with pressure sensors. Towards facilitating the use of features, choice of classification models, 

and way of evaluating a sitting posture recognizer, in this study a comparative study on pressure-sensor-based sitting posture 

monitoring is conducted. Specifically, we extract discriminant features from the sensor data based on the distribution of pressure 

sensors and explore different combinations of these features. Then, five commonly used classification models are evaluated 

towards building a robust sitting posture recognizer. Finally, extensive comparative experiments concerning four performance 

metrics are conducted on the collected datasets in subject-dependent, subject-independent, and cross-subject settings. Results 

show that the joint use of sensors at different positions leads to higher accuracy and that random forest generally outperforms 

the other four classification models. Surprisingly, compared to the subject-dependent and subject-independent settings, cross-

subject setting greatly suffers from degraded accuracy, where we preliminarily present the results of transfer learning techniques 

to mitigate this issue. In addition, we perform parameter sensitivity and time-cost analysis of random forest, which indicates 

its applicability to practical use.  
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1 Introduction 

With the advancement of technology and speciali-

zation of social roles, prolonged sedentary behavior has 

nowadays become a prevalent lifestyle and working 

condition, and consequently the associated health 

implications have gained widespread attention and 

concerns in society, particularly for the well-being of 

adolescents. Extensive researches have shown that 

a strong correlation exists between poor sitting postures 

and musculoskeletal disorders (e.g., cervical spondylosis, 

chronic back pain, improper spinal alignment, joint and 

muscle discomfort, and intervertebral disc injuries). 

Even worse, poor sitting postures can lead to higher risks 

of diseases and mortality and even psychological 

diseases such as fatigue and depression [1].  

Studies on sitting posture monitoring not only help 

reduce the health hazards linked to prolonged sitting and 

improve sitting habits, but also capture sitting posture 

data for assisting medical professionals in analyzing the 

underlying causes of certain diseases and making 

effective treatment plans [2]. Accordingly, researchers 

have conducted a large number of studies [3,4]. For 

example, Taieb-Maimon et al. facilitated the timely 

adjustment of poor sitting postures by comparing the 

sensed sitting posture images with that of proper sitting 

postures, and this study shows an improvement in the 

sitting habits of participants [5]. As a pervasive 

computing technology, sitting posture monitoring has 

also been applied in various domains. For example, in 

the realm of human-computer interaction, game inter-

faces dynamically adjust the movements and positions 

of players towards more immersive and realistic gaming 

experiences. Smart home systems adapt lighting and 

temperature along with the sitting postures, facilitating a 

comfortable living environment. Due to the variations 

arising from work environments and user sitting habits, 

however, sitting postures exhibit unique characteristics 

such as diversity, occurrence, similarity, and inter-

subject variability. For example, one probably performs 

the same sitting posture differently at different times and 

locations (i.e., intra-subject variation), different indi-

viduals would perform the same sitting posture 

differently (i.e., inter-subject variation), and different 

sitting postures may trigger similar sensor readings (i.e., 

similarity between different sitting postures). Hence, 

sitting posture monitoring is a challenging yet 

meaningful topic [6].  

According to the used sensors, existing sitting posture 

recognition methods can be broadly categorized into 

four groups: vision-based, wearable sensor-based, envi-

ronment sensor-based, and pressure sensor-based 

methods. Vision-based methods use computer vision 

techniques to capture real-time depth images and to 

recognize sitting postures [7]. Clearly, such methods 

often raise concerns regarding privacy and are sensitive 

to variations in lighting conditions and occlusions. 
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Wearable sensor-based methods collect posture data 

using sensors worn on human body parts (e.g., the back, 

neck, and legs) and then train a sitting posture recognizer 

[8]. Commonly used sensing units include, but not 

limited to, accelerometers, gyroscopes, strain sensors, 

and among others. For instance, Qian et al. utilized the 

strain gauge attached to one’s back to acquire sitting data 

and trained a three-layer neural network to classify 

normal sitting posture, slight kyphosis, and severe 

kyphosis [9]. The long-term use of wearable sensors, 

though convenient, would greatly impact user 

experience. In contrast, environment sensor-based 

methods utilize mediums such as WiFi, millimeter 

waves, and infrared sensors to sense and recognize 

postures. For example, Feng et al. used three RFID tags 

to investigate the correlation between RFID tag phase 

shifts and sitting postures and then used it to infer 

upright posture, forward-leaning, and tilt back [10]. 

Such methods are less/non-invasive, but vulnerable to 

environmental factors such as temperature, humidity, 

and lighting.  

Compared to the above methods, the utilization of 

pressure sensors offers advantages such as affordability 

and better user privacy. Specifically, sitting posture 

monitoring with pressure sensors captures the pressure 

distribution of different sitting postures and then builds 

a model to recognize sitting postures. For example, Hu 

et al. developed a sensing unit consisting of six flexible 

pressure sensors and employed a sliding window to 

extract features from the seat cushion, backrest, and 

armrest. A two-layer artificial neural network was 

trained to recognize seven sitting postures. They get 

97.78% accuracy with floating-point calculation and 

97.43% with fixed-point calculation [11]. Anwary et al. 

designed a seat cover embedded with pressure sensors 

and built a rule-based model by comparing the sensor 

readings of the left side and right side to infer the 

duration of asymmetric sitting postures [12]. 

Bourahmoune et al. proposed a posture and stretching 

recognition system with a pressure cushion and machine 

learning model [13]. Roh et al. developed a posture 

monitoring system with four weighing sensors placed 

beneath the chair to infer six different sitting postures 

with features extracted from the sensor data and the 

user’s body weights [14]. Jeong et al. embedded six 

pressure sensors in the seat cushion to collect pressure 

data and placed six infrared reflective distance sensors 

in the chair backrest to measure the distance between the 

backrest and user's torso. k-nearest neighbor was used to 

predict 11 distinct postures [15].  

While progresses have been made in pressure sensor-

based sitting posture monitoring, there are aspects 

needing further studies [16-18]. First, feature 

engineering and classification models are important 

factors largely determining the recognition performance, 

however, few studies have systematically evaluated the 

use of features extracted from pressure sensor data and 

the choice of classifiers. Second, most of existing studies, 

to the best of our knowledge, evaluate the performance 

of sitting posture recognizers in the subject-independent 

setting, which may over-estimate their abilities. To this 

end, we herein conduct a comparative study on sitting 

posture monitoring with pressure sensors. The main 

contributions of our study are as follows.  

(1) Discriminant features are extracted based on the 

distribution of pressure sensors and their relationships 

with different sitting postures. Specifically, we extract 

features from data of the seat pan sensors, backrest 

sensor, and center of pressure distribution. We also 

evaluate the power of these features when they are used 

separately and jointly.  

(2) Three different evaluation settings, i.e., subject-

dependent, subject-independent, and cross-subject, are 

considered towards better analyzing a sitting posture 

recognizer. This reminds us of the distribution difference 

of sensor data between users.  

(3) Extensive comparative experiments on five 

classification models (i.e., k-nearest neighbors, naive 

Bayes, decision trees, XGBoost, and random forest) 

concerning four performance metrics are conducted. 

Results show that random forest generally outperforms 

its competitors and that a recognizer in the cross-subject 

setting often suffers from degraded accuracy, where we 

show transfer learning is a potential tool. Besides, 

parameter sensitivity and time-cost analyses are 

conducted towards the tradeoff between accuracy and 

energy consumption.  

 

2 The proposed sitting posture monitoring system 

2.1 Sitting posture recognition framework 

Figure 1 presents the sitting posture recognition 

framework, which consists of a training phase and 

a prediction phase. The training stage segments the 

collected sensor data using a sliding window and then 

extracts discriminant features from each segment to 

return a feature vector. Finally, a sitting posture 

recognizer cls is trained on the feature vectors. During 

the prediction phase, the streaming sensor data are 

collected with posture sensing units. Afterwards, the 

feature extraction corresponding to the training phase is 

utilized to obtain feature vectors, which are then sent to 

the cls for recognizing sitting postures.  

The posture sensing unit in our study mainly consists 

of three modules: data acquisition module, data 

processing module, and data uploading module [6]. The 

data acquisition module consists of five pressure sensors: 

four sensors placed at the four corners of the seat pan (S1, 

S2, S3, and S4 in Fig. 1) and one sensor on the backrest 

(S5 in Fig. 1). Their working frequency is set at 400 Hz. 

The data processing module is equipped with 
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a stm32f103c8t6 processor and uses the arithmetic mean 

filtering to smooth the raw sensor readings every 

20 sampled data points. The data uploading module 

transmits the sensed data to remote servers for 

subsequent analysis and processing.  

 

 

Fig. 1. Sitting posture recognition framework 

 

2.2 Feature extraction 

We in this study extract the discriminant features 

based on the distribution of pressure sensors and their 

relationships with different sitting postures.   

Features extracted from the backrest sensor data. The 

backrest sensor can be used to infer whether one leans 

against the chair. We here only use time-domain features: 

mean, variance, maximum, and minimum, and denote 

them as Fb. 

Features extracted from the seat pan sensor data. For 

time-domain features, mean, variance, standard 

deviation, maximum, minimum, zero-crossing rate, 

mode, and difference between the maximum and 

minimum are extracted. For frequency-domain features, 

we first use fast Fourier transform to obtain frequency-

domain signals. Afterwards, we empirically extract DC 

component, mean, variance, standard deviation, slope, 

and kurtosis from both the frequency spectrum and 

amplitude. For simplicity, we note these features as Fs.  

Besides, considering the relationship between sitting 

postures and gravity center, we also extract the structural 

feature, which uses formula (1) to get the gravity 

coordinates (x, y) 
 

{
 
 

 
 𝑥 = 𝐿 ∗
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4
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𝑦 = 𝑊 ∗
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−
𝑊

2

                       (1)
 

 

 

 

 

where L and W are the length and width of the seat pan, 

respectively, and Vi is the reading of sensor Si (1 ≤ i ≤ 4). 

To reflect the variation of gravity coordinates, we extract 

time-domain features: mean, variance, maximum, and 

minimum, and denote them as Fg.  

 

3 Experimental setup and results 

3.1 Data collection 

In the experiments, four participants are provided 

with chairs equipped with pressure sensors. The 

placements of pressure sensors are shown in Fig. 1. The 

participants are four males aged between 24 and 25, with 

weights between 60 and 68 kg and heights between 170 

and 175 cm. Table 1 gives basic information of the 

participants.  

To capture sitting posture data in a natural and 

uncontrolled way, volunteers are asked to perform seven 

predefined sitting postures, including upright (correct 

sitting posture), leaning left, leaning right, leaning 

forward, leaning backward, right leg crossed, and left leg 

crossed, in their own style (that is, they are not provided 

illustrations of sitting postures to be performed), during 

which, the system collects the sensor signals. Each 

sample contains the values of pressure sensors. Fig. 2 

illustrates the sitting postures.  
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Table 1. Basic information on the volunteers 

Volunteer ID Gender Age Height/cm Weight/kg 

id1 Male 25 170 64 

id2 Male 24 171 60 

id3 Male 25 173 68 

id4 Male  25 175 68 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Fig. 2. Illustration of different sitting postures: (a) upright, (b) leaning left, (c) leaning right, (d) leaning forward, 

(e) leaning backward, (f) right leg crossed, (g) left leg crossed 

 

Particularly, to annotate the streaming sensor data 

without compromising user experience, we position 

a camera in front of the volunteer to record the 

experimental process and use it to annotate sensor 

readings by replaying the videos. In this experiment, we 

collected sensor data with a duration of 12 minutes for 

each volunteer. 

 

3.2 Experimental setup 

For the streaming pressure sensor data, we employ a 

sliding window with 1s size to segment data and extract 

discriminant features from each segment. Afterwards, 

we use them separately or jointly to train a sitting posture 

recognizer. Herein, we consider the use of Fs, Fg, Fs & 

Fg, Fb, and Fs & Fg & Fb.  

For the choice of classification models, five 

commonly used ones, including K-nearest neighbors 

with k=1 (KNN), naive Bayes (NB), decision tree (DT), 

XGBoost, and random forest (RF), are evaluated [19]. 

Accuracy (acc), precision (pre), recall (rec), and F1 are 

used as the performance metrics. Specifically, given 

L={L1, L2, …, L|L|} representing a set of labels with |L| 

classes,  

 accuracy =∑
 Num𝑖

𝑁

|𝐿|

𝑖=1

                                        (2) 

where N represents the total number of samples, Numi 

denotes the number of samples from class Li that are 

correctly classified. 

 precision =
1

|𝐿|
∑

𝑁𝑢𝑚𝑖

𝑁𝑃𝑖

|𝐿|

𝑖=1

                                 (3) 

 

 recall =
1

|𝐿|
∑

𝑁𝑢𝑚𝑖

𝑁𝑇𝑖

|𝐿|

𝑖=1

                                       (4) 

Here, NPi represents the number of samples predicted as 

class Li, and NTi indicates the number of samples from 

class Li. 

𝐹1  =
2 ×  precision ×  recall 

 precision +  recall 
                        (5) 

 

Besides, we consider three evaluation settings, i.e., 

subject-dependent, subject-independent, and cross-

subject, for better analyzing the generalization ability of 

a sitting posture recognizer. Subject-dependent setting 

trains the sitting posture recognizer with the training set 

of a specific individual and tests it on the test set of the 

same individual. Subject-independent setting optimizes 

the sitting posture recognizer using the training data of 

all individuals and tests it on test data from all 

individuals. Cross-subject setting trains the sitting 

posture recognizer on the data of individual A and 

evaluates its performance on the data of individual B.  
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3.3 Results of subject-independent setting 

In this setting, we combine sensor data of all 

participants and then utilize a stratified ten-fold cross-

validation to generate independent training and testing 

sets, where each fold is used as a testing set and the 

remaining nine folds serve as training set. We train a 

posture recognizer on the training set and evaluate its 

performance on the testing set. The final experimental 

results are the average of the ten iterations. Table 2 

presents the accuracy, where the best results for each 

classification model and each feature set are shown in 

bold and underlined, respectively. For better illustration, 

we also present the results in Fig. 3. From Tab. 2 we can 

observe that the joint use of different feature sets 

generally obtains higher accuracy except KNN. This is 

possibly because there exist redundant features. For 

example, RF achieves the highest accuracy of 95.45% 

on Fs & Fg & Fb, which is higher than that of Fs (94.10%), 

Fg (90.04), Fs & Fg (94.43), and Fb (46.11%). Not 

surprisingly, the single use of Fb obtains the lowest 

accuracy. Second, from the view of classifiers, we can 

see that RF generally gets better performance. For 

instance, it obtains 95.45% accuracy, which is 

comparable to XGBoost (95.64%) and outperforms 

KNN (75.51%), 65.33% (NB) and 91.28% (DT). Similar 

observations can also be seen in Fig. 4.  

 

Table 2. Accuracy of subject-independent experiments 

Features KNN NB DT XGBoost RF 

Fs 75.51 64.02 90.21 94.08 94.10 

Fg 88.92 64.24 86.67 89.22 90.04 

Fs & Fg 75.51 64.02 90.26 94.13 94.43 

Fb 39.77 33.71 41.94 48.97 46.11 

Fs & Fg & Fb 75.51 65.33 91.28 95.64 95.45 

 

 

 

Fig. 3. Accuracy of subject-independent experiments 

 

Fig. 4. F1 of subject-independent experiments 

To facilitate a deep analysis of misclassifications 

among different sitting postures, Fig. 5 gives confusion 

matrices of RF for different feature sets, where 0 to 6 

correspond to upright, leaning left, leaning right, leaning 

forward, leaning backward, left leg crossed, and right leg 

crossed. From Fig. 5, we can observe that the use of Fb 

enhances the differentiation between leaning forward 

and upright. For instance, 13 leaning forward samples 

are misclassified as upright without Fb and 10 leaning 

forward samples are misclassified as upright with Fb. 
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(a) Fs 

 
(b) Fg 

 
(c) Fs & Fg 

 
(d) Fb 

 
(e) Fs & Fg & Fb 

 

Fig. 5. Confusion matrices of subject-independent experiments. (a) Fs, (b) Fg, (c) Fs & Fg, (d) Fb, (e) Fs & Fg & Fb  

3.4 Results of subject-dependent setting 

A stratified ten-fold cross-validation is employed to 

generate independent training and testing sets, where 

each fold is used as a testing set while the remaining nine 

folds serve as the training set. We train the sitting posture 

recognition model on the training set and evaluate its 

power on the testing set. The final results are the average 

of ten results. Table 3 shows the results, where the best 

accuracy for each classification model is shown in bold. 

From Tab. 3, we can observe that RF generally gets 

comparable performance to XGBoost and outperforms 

KNN, NB, and DT. For example, for id1, RF achieves 

accuracy of 98.09% on Fs & Fg & Fb, while KNN, NB, 

DT, and XGBoost get accuracy of 82.93%, 82.33%, 

96.18%, and 97.37%, respectively. Second, the use of Fg 
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for KNN remains a priority and the joint use of different 

features fails to consistently get better accuracy. This is 

due to redundant features. 

 

3.5 Results of cross-subject setting 

Table 4 presents the cross-subject results with Fs & 

Fg & Fb, where “A => B” denotes that data from user A 

is used to train a sitting posture recognizer and data from 

user B is used to test its accuracy. We can see a notable 

decline in accuracy compared with subject-dependent 

and subject-independent settings. For example, RF only 

gets 46.29% accuracy for id1 => id2, compared to the 

95.45% of subject-independent case and 98.09% of 

subject-dependent case.  

This is mainly because of the difference between 

distributions of training and testing sets. One feasible 

solution is to utilize transfer learning to generalize 

knowledge from source to target domain [20]. Table 5 

shows the preliminary results of three transfer learning 

algorithms (i.e., Stratified Transfer Learning (STL), 

Balanced Distribution Adaptation (BDA), and easy 

Transfer Learning). We see that transfer learning helps 

obtain enhanced accuracy.  

 

Table 3. Results of subject-dependent experiments 

 

Features 
KNN NB DT XGBoost RF 

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 

id1 

Fs 82.93 82.59 78.63 80.38 94.63 95.04 95.94 96.17 96.87 96.89 

Fg 94.27 94.82 75.53 78.02 92.84 93.36 97.25 97.21 97.85 95.78 

Fs & Fg 82.93 82.59 78.63 80.38 94.15 94.70 96.30 96.52 96.78 96.98 

Fb 63.96 60.67 60.73 51.73 69.22 66.40 73.75 70.44 71.96 68.00 

Fs & Fg & Fb 82.93 82.59 82.33 84.10 96.18 96.28 97.37 97.43 98.09 98.12 

id2 

Fs 94.95 95.26 94.95 95.06 86.36 86.46 96.02 96.40 96.24 96.46 

Fg 93.66 93.54 81.20 80.64 91.40 91.42 93.34 93.39 93.45 93.23 

Fs & Fg 86.36 86.46 95.06 95.32 94.95 95.34 96.35 96.55 96.67 96.88 

Fb 33.84 27.32 27.93 23.64 35.34 28.06 36.41 27.60 35.88 28.68 

Fs & Fg & Fb 86.36 86.46 95.06 95.33 94.84 95.02 96.35 96.51 96.78 97.01 

id3 

Fs 75.13 74.22 83.42 79.15 94.82 94.52 97.10 97.05 96.37 96.42 

Fg 93.67 93.60 82.79 82.87 92.84 92.75 93.57 93.70 92.94 93.41 

Fs & Fg 82.01 75.57 83.42 79.66 95.44 95.07 96.37 96.33 96.47 96.51 

Fb 60.41 58.55 57.72 48.77 64.77 61.10 69.22 65.17 67.25 64.33 

Fs & Fg & Fb 75.13 74.22 83.62 79.30 95.75 95.58 97.72 97.57 97.61 97.46 

id4 

Fs 67.62 62.11 86.06 84.06 87.60 85.16 93.09 91.66 92.21 90.96 

Fg 89.24 87.39 82.44 81.88 89.02 86.97 91.44 90.16 91.00 89.67 

Fs & Fg 67.62 62.11 86.06 84.06 88.04 86.53 93.64 92.82 92.82 92.93 

Fb 46.43 36.35 21.96 19.18 46.87 36.12 50.17 37.99 47.86 35.99 

Fs & Fg & Fb 67.18 61.69 85.62 84.49 88.59 86.70 94.19 93.19 93.20 92.00 

 

 

Table 4. Results of cross-subject experiments 

 

 
KNN NB DT XGBoost RF 

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 

id1 => id2 50.59 51.77 49.09 42.44 14.29 9.06 42.00 30.53 46.29 39.87 

id2 => id1 35.32 25.10 52.15 47.10 33.53 20.06 20.88 9.72 34.61 27.59 

id1 => id3 21.04 24.68 30.78 25.81 31.19 25.44 51.50 42.20 24.56 25.09 

id3 => id1 10.50 15.03 28.64 20.33 34.13 24.74 17.90 19.93 37.95 28.84 

id1 => id4 32.27 29.98 34.69 31.37 32.27 26.4 40.07 39.41 39.41 37.47 

id4 => id1 20.88 23.03 48.21 43.68 45.11 41.61 50.84 45.22 45.94 43.72 

id2 => id3 28.29 30.38 30.36 33.18 40.00 35.39 26.94 25.56 45.08 44.89 

id3 => id2 27.6 33.06 28.03 31.55 21.37 14.51 27.07 29.71 48.76 42.26 

id2 => id4 31.17 36.56 17.78 17.80 17.19 15.59 30.08 28.49 34.47 35.27 

id4 => id2 29.97 25.35 39.74 34.55 30.40 22.38 66.70 59.83 60.69 49.27 

id3 => id4 18.22 20.95 49.4 32.05 29.64 24.96 49.62 38.71 51.48 47.38 

id4 => id3 22.18 26.62 47.25 40.55 44.66 34.75 65.49 57.98 34.2 35.42 
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Table 5. Preliminary results of transfer learning experiments 

Transfer Learning 
STL BDA easyTL 

Acc F1 Acc F1 Acc F1 

id1 => id2 43.72 40.19 48.43 40.75 57.46 47.69 

id2 => id1 26.01 32.45 42.17 36.70 37.71 27.26 

id1 => id3 38.76 40.21 36.20 33.47 30.47 25.85 

id3 => id1 41.41 40.32 26.16 24.68 29.48 33.44 

id1 => id4 62.02 50.04 43.53 42.52 44.45 46.66 

id4 => id1 44.63 45.84 44.27 43.05 38.90 33.59 

id2 => id3 51.40 52.95 41.09 35.08 39.59 34.86 

id3 => id2 59.94 54.38 44.38 38.18 60.15 53.81 

id2 => id4 50.27 50.13 40.34 38.94 31.28 27.95 

id4 => id2 44.15 42.56 58.07 56.61 38.89 31.73 

id3 => id4 43.69 45.97 37.06 35.07 44.13 43.48 

id4 => id3 33.47 35.76 51.50 50.14 51.50 44.47 

 

 

3.6 Evaluation of the size of sliding window 

We assess the influence of sliding window size on the 

performance of RF-based recognizer. Fig. 6 presents the 

results, where the X-axis represents sliding window size 

and Y-axis is the accuracy. The candidate values are 1, 3, 

and 5s. Fig. 6(a) shows the subject-dependent accuracy. 

It can be seen that accuracy decreases with the increase 

of window size except the use of Fb. Fig. 6(b) shows the 

subject-independent accuracy on id1. We can observe 

that the accuracy decreases with the increase of window 

size. Fig. 6(c) presents the cross-subject accuracy where 

the training data is from id1 and test data is from id4.  

3.7 Evaluation of the number of trees 

Considering the superiority of RF, we further evaluate 

the number of trees on the recognition accuracy. The 

candidate values are 10, 25, and 50. Figure 7 presents the 

accuracy for both the subject-independent case and 

subject-dependent case. From Fig. 7, we can observe that 

the accuracy of RF is less sensitive to the number of trees.  

 

 

 
 

(a) subject-dependent setting 

 
 

(b) subject-independent setting  
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(c) cross-subject setting 
 

 

 

 

 

 

 

 

Fig. 6. Parameter sensitivity analysis: (a) subject-

dependent setting, (b) subject-independent setting, 

(c) cross-subject setting 

 

 

Fig. 7. Accuracy and time cost versus the number of trees 

 

3.8 Time cost 

Besides accuracy, time cost is an important factor for 

sitting posture recognition systems. We herein present 

the time cost of RF-based recognizer and conduct 

experiments on a computer with a core i5-12490f CPU 

and 32G RAM. Fig. 7 gives the time cost (in seconds) 

versus the number of trees, where we can see that RF can 

satisfy real-time processing requirement and that the use 

of 25 achieves a better tradeoff between accuracy and 

time consumption.  

 

 

4 Conclusions 

A comparative study on sitting posture recognition 

using pressure sensors is conducted in this study. We 

extract different discriminant features based on the 

distribution of pressure sensors and their relationships 

with different sitting postures and then evaluate their 

power. Then, five commonly used classification models 

(i.e., KNN, NB, DT, XGBoost, and RF) are considered. 

Finally, we conduct comparative experiments con-

cerning four performance metrics in three different 

settings (ie subject-dependent, subject-independent, and 
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cross-subject). Results indicate that random forest 

generally remains a priority and that cross-subject sitting 

posture recognizers often suffer from lower accuracy, 

where we preliminarily show the potential use of transfer 

learning to this issue. 

For future work, this study only initially highlights the 

significance of cross-subject sitting posture recognition, 

and hence how to utilize transfer learning techniques to 

mitigate this issue deserves further study. 
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