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Dispersion models are necessary for precise determination of the dielectric response of materials used in optical and
microelectronics industry. Although the study of the dielectric response is often limited only to the dependence of the optical
constants on frequency, it is also important to consider its dependence on other quantities characterizing the state of the
system. One of the most important quantities determining the state of the condensed matter in equilibrium is temperature.
Introducing temperature dependence into dispersion models is quite challenging. A physically correct model of dielectric
response must respect three fundamental and one supplementary conditions imposed on the dielectric function. The three
fundamental conditions are the time-reversal symmetry, Kramers-Kronig consistency and sum rule. These three fundamental
conditions are valid for any material in any state. For systems in equilibrium there is also a supplementary dissipative
condition. In this contribution it will be shown how these conditions can be applied in the construction of temperature
dependent dispersion models. Practical results will be demonstrated on the temperature dependent dispersion model of
crystalline silicon.
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1 Introduction

Dispersion models describe the linear dielectric re-
sponse. In the case of isotropic materials without spatial
dispersion the dielectric response is usually described by
the dielectric function ε̂(ω) expressing the linear relation

between the electric field Ê(ω, k̂) and the electric dis-

placement field D̂(ω, k̂)

D̂(ω, k̂) = ǫ0 ε̂(ω) Ê(ω, k̂), (1)

where ǫ0 is the permittivity of vacuum, ω is frequency

and k̂ is the complex wavevector.

The complex dielectric function must fulfill three fun-
damental conditions [1-4]: the time-reversal symmetry

ε̂(ω) = ε̂∗(−ω), (2)

the Kramers-Kronig consistency

εr(ω) = 1 +
1

π
−

∫ ∞

−∞

εi(ξ)

ξ − ω
dξ (3)

and the sum rule

∫ ∞

0

ω εi(ω) dω =
π

2
ω2
p , (4)

where ωp is a constant called the plasma frequency. The
first two conditions can be merged into one equation

εr(ω) = 1 +
2

π
−

∫ ∞

0

ξ εi(ξ)

ξ2 − ω2
dξ. (5)

These conditions express the fact that if the dielectric
response is described using the susceptibility function
in the time domain, then this function is a real causal
function. The third condition is a result of the combina-
tion of the superconvergence theorem and the asymptotic
behavior of any dielectric response, ie that for high fre-
quencies all dispersion models converge to the model of
sparse plasma . The sum rule condition is important for
the construction of dispersion models because it expresses
the relation between the integral value of the quantity
ωεi(ω) and the density of electrons Ne and nuclei Nn in
the material [5-7]

ω2
p =

e2Ne

ǫ0me
+
∑

n

e2Z2
nNn

ǫ0mn
, (6)

where e is the elementary charge and me is the electron
mass. The symbols Zn and mn denote the proton number
and mass of nuclei of type n .

In addition to the three fundamental conditions, which
hold for the system in any state, there is one additional
supplementary condition fulfilled for systems in thermo-
dynamic equilibrium. This supplementary dissipative con-
dition expresses the fact that for systems in equilibrium
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Fig. 1. Transition strength function F (E,T ) of c-Si calculated using our model in the spectral range covering all the optical excitations
for three selected temperatures

the absorption processes are more probable than the stim-
ulated emission processes

εi(ω) ≥ 0 for ω > 0 . (7)

For the description of dispersion models it is more com-
mon to use the photon energy E = ~ω (~ is the reduced
Planck’s constant) instead of frequency ω . Moreover, it
is convenient to describe the dielectric response using the
function F (E, T ) = Eεi(E, T ) which is in our nomencla-
ture called the transition strength function. Note that in
order to emphasize that the dielectric response is temper-
ature dependent, we explicitly indicated the dependence
on temperature T . The equations(4), (5) and (6) can be
rewritten as [6, 7]

εr(E, T ) = 1 +
2

π
−

∫ ∞

0

F (X,T )

X2 − E2
dX , (8)

εi(E, T ) =
F (E, T )

E
, (9)

∫ ∞

0

F (E, T ) dE = N(T ) , (10)

N(T ) =
πe2~2Ne(T )

2ǫ0me
+
∑

n

πe2Z2
n~

2Nn(T )

2ǫ0mn
, (11)

where the quantity N(T ) is called the total transition

strength or just transition strength. It should be noted
that according to (10) the transition strength function
F (E, T ) could be interpreted as a non-negative distribu-
tion function for the total transition strength N(T ). The
example of the transition strength function is in Fig. 1,
where the horizontal bars indicate the spectral ranges of
the individual elementary excitations.

Equations (8), (9), (10) and (11) form a basis for the
construction of our dispersion models [6-8]. In order to de-
scribe the concrete materials, it necessary to perform one
more step. It is necessary to separate the total transition

strength into terms corresponding to individual elemen-
tary excitation

F (E, T ) =
∑

t

Nt(T )F
0
t (E, T ) , (12)

where the index t distinguishes the individual elementary
excitations, and the functions F 0

t (E, T ), called the nor-

malized transition strength functions of elementary exci-

tations, are normalized to unity with respect to the sum
rule integral

∫ ∞

0

F 0
t (E, T ) dE = 1 . (13)

The quantities Nt(T ) are called the transition strengths

of elementary excitations and their sum gives the total
transition strength

∑

t

Nt(T ) = N(T ) . (14)

The elementary excitations are, for example, direct or in-
direct electronic excitations, one branch of two-phonon
absorption, etc (see fig Fig. 1). The number of the con-
tributions depends on the specific material and also on
the required accuracy of the dispersion model. For ex-
ample, for amorphous materials it is not necessary to
model the direct and indirect electronic transitions sep-
arately because these transitions are indistinguishable in
such materials, therefore, it is possible to model them by
one contribution. While it is not necessary to model the
multi-phonon excitations in the dispersion model used for
very thin films because they are weak, it is necessary to
take the multi-phonon absorption processes into account
in the dispersion model used for the thick slab.

The ideas presented in this work are applicable to a
wide range of materials. Their concrete utilization will be
discussed in the context of the temperature dependent
dispersion model of crystalline silicon [9-12].
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2 Thermal expansion effect

The total transition strength N(T ) depends on the
density of the charged particles in the system, therefore,
if the number of the particles is constant, then the transi-
tion strength is inverse proportional to the volume of the
system V (T )

N(T ) = N300KV (TR)

V (T )
, (15)

where N300K is the transition strength at the reference

temperature TR and V (TR) is the volume at this temper-
ature. In our work we define the reference temperature
(RT) in the value of 300 K. Since the temperature in
our laboratory is kept at this value, the abbreviation RT
can be also interpreted as the room temperature. Note
that this temperature is different from 293.15 K (20◦C)
defined in ISO 1 as the room temperature [13]. If the den-
sity of the charged particles in the system is known, eg for
the crystalline silicon (c-Si), then the value of N300K can
be expressed using (11). For the crystalline silicon the
total transition strength at the reference temperature is

N300K = 1515 eV 2 [6]. In other cases the density of the
charged particles may not be known and the value of
N300K must be interpreted as a free parameter of the
dispersion model. In real situations the knowledge of the
exact value of N300K is not necessary for the construction
of the dispersion model because this value corresponds to
the value calculated by the sum rule integral over the
whole spectral range covering also the spectral range of
high energies, which is not experimentally accessible us-
ing the table-top instruments. On the other hand, the
expansion factor is very important for the construction
of the temperature dependent dispersion model because
the relative changes of the optical constants affect the
interference effects in thin film systems and thick slabs.

For the proper interpretation of the interference effects
in the data measured at different temperatures, it is also
necessary to know the temperature dependencies of the
thicknesses in the system under study. Of course, the
temperature dependencies of the volume and thicknesses
are correlated effect. They can be described using the
quantity called the linear thermal expansion, which is for
the isotropic materials given by the scalar function e(T )
defined as follows

e(T ) =
L(T )− L(TR)

L(TR)
, (16)

where L(T ) is the linear dimension of the system at
temperature T . The total transition strength and the
thickness of the film or slab is then calculated from the
values at the reference temperature as

N(T ) = N300K E(T ) , (17)

where E(T ) is the expansion factor defined as

E(T ) =
V (TR)

V (T )
=

[

1

1 + e(T )

]3

(18)

and

d(T ) = d300K [1 + e(T )] , (19)

where d300K is the thickness at the reference temperature.
In our software [14] the model of the linear thermal ex-
pansion is implemented as a part of the dispersion model
and it is used not only to calculate the changes in the to-
tal transition strength but also to calculate the changes
in the thicknesses.

In the frame of the quasiparticle approximation the
linear thermal expansion depends linearly on the phonon
occupation numbers. Therefore it can be calculated by
means of the integration over the Brillouin zone. As it
was shown in [12, 15, 16], the temperature dependence
of the linear thermal expansion can be modeled using
the average Bose–Einstein statistical factors (ABESF).
In this model the continuous distribution of phonons is
represented by a small number of average phonons, and
the linear thermal expansion is given as follows

e(T ) = e0 +
∑

j

ej
exp(Θj/T )− 1

, (20)

where the index j distinguishes the terms correspond-
ing to the individual average phonons, e0 is the value of
e(0K), Θj are the energies of the average phonons ex-
pressed as temperatures and ej control the magnitudes of
the individual ABESF terms. The value e0 is dependent
on the other parameters ej , Θj and it can be calculated
from the condition e(TR) = 0 as follows

e0 = −
∑

j

ej
exp(Θj/TR)− 1

(21)

The linear thermal expansion usually increases with
the increasing temperature, but for many materials there
are certain temperature ranges (usually for low temper-
atures) in which this function decreases. This effect is
called the anomalous thermal expansion. The anomalous
thermal expansion at low temperatures is exhibited by
common materials such as H2O (ice up to 70 K [17]) or
SiO2 (fused silica up to 150 – 190 K [18]). The materials
with the anomalous thermal expansion at high tempera-
tures are, for example, ZrW2O8 (up to 1050 K [19]) or
ScF3 (up to 1100 K [20]).

The linear thermal expansion of c-Si has been mea-
sured with high accuracy for below the room tempera-
tures in the recently published work of Middelmann et

al [16]. The updated version of the dispersion model of c-
Si uses the formula of linear thermal expansion based on
these data and Watanabe et al data. The column named
“1-st fit” shows the parameters in the three-term formula
obtained by fitting the raw measured data of the tem-
perature dependence of the length L(T ) of sample 2,
which were kindly provided by the colleagues from the
German metrology institute PTB. These values are in a
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Table 1. Values of the parameters of the linear thermal expansion models obtained by fitting the Middelmann et al [16], Watanabe et

al [21] and Ibach’s [15] experimental data

parameter 4-th fit in [12] 1-st fit 2-nd fit 3-rd fit

e1 -0.00017(2) -0.0001946(10) -0.0001865(8) -0.0001947(13)

e2 0.00332(3) 0.00262(8) 0.003077(12) 0.00262(9)

e3 0.00186(12) 0.00089(7) 0.000631(8) 0.00088(8)

e4 – – – 0.0023(3)

Θ1 (K) 198(9) 199.6(3) 197.1(3) 199.6(4)

Θ2 (K) 652(6) 612(3) 633.5(8) 612(4)

Θ3 (K) 3033(133) 893(23) 1249(17) 894(24)

Θ4 (K) – – – 3721(141)

χ (fit quality)

e Watanabe et al 0.275 – 1.231 0.372

α Watanabe et al 0.115 – – –

α Ibach 0.257 – – –

L Middelmann et al – 0.561 0.662 0.561
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Fig. 2. Temperature dependencies of the linear thermal expansion e(T ) and expansion factor E(T ) of c-Si

good agreement with the fit presented in Middelmann et

al work. The column named “2-nd fit” corresponds to the

three-parameter formula fitted on both the Middelmann

et al and Watanabe et al data. From the values of the

quantity χ describing the quality of the fit it is evident

that the obtained fit is worse than the fits in the first two

columns. This is especially true for the fit of the Watan-

abe et al data (χ = 0.275 for the 4-th fit in [12] and

χ = 1.231 for the 2-nd fit). For this reason we added

the fourth ABESF term in to the formula (20). The pa-

rameters corresponding to this fit are in the last column

named “3-rd fit”. Considering more than four ABESF

terms did not result in better fit of the experimental data.

The Watanabe et al and Middelmann et al experimental
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data and their fits are depicted in Fig. 2. The experimen-
tal data for e(T ) are taken from Watanabe et al work
[21]. The quantity L(T ) is the length of sample 2 in the
Middelmann et al work [16]. Note that the curves are al-
most identical, small differences are visible only at high
temperatures. The values calculated using the formula
corresponding to the 1-st fit do not describe the experi-
mental data at high temperatures very well. This is not
surprising since the Watanabe et al data were not used
for this fit. The negative value of e1 corresponds to the
anomalous thermal expansion in the region below 125 K
(see course of L(T ) in Fig. 2). The temperature depen-
dence of the expansion factor E(T ) used in our advanced
dispersion model of c-Si, which is calculated using (18),
is also plotted in Fig. 2.

The frequencies of the average phonons corresponding
to temperatures Θ1 and Θ2 were 4.2 and 12.8 THz, re-
spectively, which corresponds to the mean frequencies of
the transversal acoustical and longitudinal or transver-
sal optical phonons [10, 15]. While the longitudinal and
transversal optical phonons contribute positively to the
derivatives of the linear thermal expansion e(T ), the
acoustical phonons contribute negatively. The anomalous
linear thermal expansion is caused by the predominance
of the transversal acoustical phonons over the longitudi-
nal and transversal optical phonons at low temperatures.
The third and the fourth terms in formula (20) must be
interpreted as correction terms because the temperatures
Θ3 and Θ4 correspond to frequencies 18.6 and 77.5 THz
which lying outside of the range of phonon frequencies in
c-Si [10, 15].

3 Dependencies on the statistical factors

In Section 2 it was shown how the total transition
strength N(T ) varies with temperature. In this section
it will be shown how is the total transition strength re-
distributed among the transition strengths Nt(T ) of the
individual elementary excitations. The individual elemen-
tary excitations can be described in the frame of the
quasiparticle approximation as the systems containing
variable number of quasiparticles. The two types of quasi-
particles important for the interaction of light with mat-
ter are the phonons and excitons (ie electrons and holes).
The transition strengths of the individual elementary ex-
citations can be expressed as

Nt(T ) = N300K
t ft(T ) E(T ) , (22)

where N300K
t are the transition strengths of individual

contributions at 300 K and E(T ) describes the tem-
perature dependence due to the changes in the density
of charged particles. The statistical factors ft(T ) ex-
press the dependence due to the changes in the mean
occupation numbers of the participating quasiparticles,
which are governed by the Bose–Einstein and Fermi–
Dirac statistics.
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Fig. 3. Bose–Einstein statistical factor fBE(Eph, T ) as a function
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3.1 Phonons

Phonons are bosonic quasiparticles governed by the
Bose–Einstein statistics

〈nph〉 = fBE(Eph, T ) =
1

exp
(

Eph

kBT

)

− 1
, (23)

where 〈nph〉 is the mean number of the specific phonons
and Eph is the corresponding energy quantum needed for
changing the vibrational state of the system (phonon en-
ergy). The dependencies of the Bose–Einstein statistical

factor fBE(Eph, T ) on the phonon energy and tempera-
ture are depicted in Fig. 3. The positions of the phonon
energies of c-Si are calculated at 300 K. The indicated
temperatures Θ1 , Θ2 and Θ3 of average phonons corre-

spond to the 3rd fit in Tab. 1. The upper panel show the
dependence on the phonon energy at constant temper-
ature, whereas the bottom panel shows the dependence
on the temperature for the specific phonon energy. The
top axis of the upper panel shows the phonon energies of
c-Si calculated at 300 K for the directions of the highest
symmetries Γ, X and L. From the displayed hierarchy
of phonon energies it is obvious that the mean numbers
of transversal acoustical phonons (with the lowest ener-
gies) are larger than the mean numbers of longitudinal
phonons and transversal optical phonons.

The bottom panel of Fig. 3 shows that the mean num-
ber of specific phonons is almost zero up to approximately
0.25Eph/kB and that for high temperatures it behaves as
(see the dashed line)

〈nph〉 ≈
kBT

Eph
−

1

2
. (24)

The mean number of the phonons with energy Eph at
temperature T given by the Bose–Einstein statistics still
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fluctuates due to the relaxation (scattering) processes and
due to the interaction with the surrounding, eg by the
absorption or emission of the photons.

The phonons can interact with light by processes in
which the phonons are created or annihilated. However,
the probabilities of the creation and annihilation pro-
cesses are not the same. The probability of the phonon
annihilation processes is proportional to the number of
the excited phonons nph before the interaction with light
whereas the probability of the inverse processes of phonon
creation is proportional to the number of the excited
phonons after the interaction with light 1 + nph , where
nph is the the number of the excited phonons before the
interaction. This is the reason why we decided to plot
two curves in Fig. 3. The green curves correspond to the
probability of the phonon creation while the red curve
corresponds to the probability of annihilation.

Note that, the probability of the creation of the
phonon is always higher than the probability of the an-
nihilation of the same phonon even if the system is in
the non-equilibrium state. Therefore, the net contribu-
tion to the transition strength of the system is positive.
This contrasts with electrons, which may give negative
contribution in the non-equilibrium states (see Section
3.2).

3.1.1 O n e-p h o n o n a b s o r p t i o n

The dielectric response of the matter must take into
account both the photon absorption and the stimulated
emission processes. The photon absorption processes con-
tribute positively to the transition strength function while
the stimulated emission processes contribute negatively.
In the frame of one-phonon processes the interaction of
the light is represented by the creation or annihilation
of photon with the simultaneous annihilation or creation
of phonon with the energy E = Eph . Because the to-
tal momentum must be conserved and the momentum of
the photon is negligible compared to the momentum of
massive (quasi)particle, only the phonons with near-zero
momentum k ≈ 0 can participate in the one-phonon ab-
sorption processes. In other words, only the transversal
optical (TO) phonons at Γ point in crystalline materials
or localized vibrational states existing in both crystalline
and disordered materials can interact with the electro-
magnetic field. Thus, the transition strength function rep-
resenting one-phonon processes for the specific phonon
can be expressed by the delta function weighted by the
probability of the individual photon absorption or stim-
ulated emission processes:

F1ph(E, T ) = N300K
ph

[

(

1 + fBE(Eph, T )
)

δ(|E| − Eph)

− fBE(Eph, T ) δ(|E| − Eph)
]

E(T ) =

N300K
ph δ(|E| − Eph) E(T ) .

(25)

It is evident that the Bose–Einstein statistics does not in-
troduce temperature dependence into this final formula.
This means that the statistical factor f1ph(T ) of the

one-phonon processes in (22) is a constant equal to one.

In practice the one-phonon absorption is not described

by sharp absorption lines represented by the delta func-

tion but by broadened absorption peaks. The Lorentzian
broadening function is suitable for the TO phonons in

crystalline materials, the Gaussian broadening function

is appropriate for the modeling of localized vibrational

modes in crystalline or amorphous materials. A more gen-

eral model of the broadening function is the Voigt func-

tion representing the convolution of the Lorentzian and
the Gaussian functions. The most general models use the

asymmetric Voigt profiles. The phonon absorption peaks

with asymmetric shapes represent couplings between the

vibrational modes or the Fano resonance (quantum inter-

ference between electrons and phonons).

Although there are TO phonons at the Γ point in the

c-Si crystal, they do not contribute to the one-phonon

absorption. The reason is that the crystalline silicon is a

homopolar material with purely covalent bonds and for

such materials the probability of the excitation of the TO

phonon by the interaction with light is zero. The homopo-

lar materials exhibit one-phonon absorption only on the
localized vibrational states, ie if the crystal structure con-

tains defects. In the c-Si such defect can be, for example,

the interstitial oxygen. The interstitial oxygen with the

typical concentration 20 ppm occurs in the Czochralski

silicon used commonly in the electronics industry. The

strength of the absorption structures caused by the in-
terstitial oxygen is linearly proportional to the concen-

tration of the interstitial oxygen but it is independent

on the temperature. The interstitial oxygen causes pres-

ence of several localized vibrational modes of the O atoms

which can be modeled using the Gaussian broadened dis-

crete spectrum and vibrational modes of the Si atoms
forming the absorption band. The absorption band cor-

responds to the vibration of the Si atoms in the vicinity

of the O atoms where the translation symmetry is bro-

ken. These modes correspond to the vibration of the Si–Si

bonds and their energies cover the whole range from zero

to the maximal phonon energy in c-Si at the Γ point.
This absorption band can be modeled by the Gaussian

broadened piecewise polynomial function. For details see

our previous work [9].

3.1.2 M u l t i-p h o n o n a b s o r p t i o n

The multi-phonon absorption is a weak effect in gen-

eral, therefore, it is observable only as the attenuation

of light in relatively thick partially transparent slabs. It

can be neglected in the dispersion models for thin films.
As the number of the participating phonons increases the

strength of the multi-phonon absorption decreases and

the absorption structures extend to higher frequencies.

The multi-phonon absorption is usually visible only in the

spectral regions where it is not masked by other absorp-

tion structures. For example, the complete two-phonon

absorption structure can be observed only in materials
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where the one-phonon absorption is weak, ie in the ho-
mopolar materials, otherwise, the lower half of the spec-
tral range in which this absorption occurs is masked by
much stronger one-phonon absorption.

The statistical factors in (22) for the two-phonon ab-
sorption can be derived by the same procedure as in the
last section. If the two participating phonons are denoted
A and B, then the following well known [22, 23] temper-
ature dependent statistical factors can be derived:

f2ph(A+B)(T ) = 1 + fBE(EA, T ) + fBE(EB, T ) (26)

and

f2ph(A-B)(T ) = fBE(EA, T )− fBE(EB, T ) . (27)

The first statistical factor corresponds to the absorption
processes where both the phonons are created or annihi-
lated, whereas the second statistical factor corresponds
to the absorption processes where one phonon is created
and the other is annihilated. The statistical factors gov-
erning the two-phonon absorption processes depend lin-
early on the Bose–Einstein statistical factors of individ-
ual phonons. These statistical factors can be easily used
for expressing the transition strength of the two-phonon
absorption on localized vibrational modes. The above re-
sults were derived for two phonons with specific energies.
The complete description of the two-phonon absorption in
crystalline materials is relatively complicated task leading
to absorption bands which combine contributions from all
pairs of phonons with zero total momentum. Neverthe-
less, the transition strength in the resulting model still
exhibits the linear dependence on the Bose–Einstein sta-
tistical factors. The details concerning this model applied
to c-Si are described in our previous works [7, 10].

The three- and four-phonon absorption processes are
also included in our temperature dependent dispersion
model of c-Si. These absorption bands are modeled by the
Gaussian broadened piecewise polynomial function with
statistical factors assuming only simultaneous creation or
simultaneous annihilation of three or four phonons, ie

f3ph(T ) = 1 + 3fBE(E3ph/3, T ) + 3[fBE(E3ph/3, T )]
2

(28)

and

f4ph(T ) = 1 + 4fBE(E4ph/4, T ) + 6[fBE(E4ph/4, T )]
2

+ 4[fBE(E4ph/4, T )]
3 . (29)

It should be noted that these formulas were derived with
the assumption that all the participating phonons have
the same energy.

The spectral dependencies of the transition strength
function corresponding to the phonon absorption of the
float zone c-Si calculated by our model for temperatures
in the range from 5 to 600 K are plotted in Fig. 4. Since
the one-, two-, three- and four-phonon absorption struc-
tures exhibit different dependencies on temperature, it
is possible to distinguish these processes if the tempera-
ture dependent data are available [11]. The separation of
the transition strength function calculated at 300 K into
parts corresponding to the one-, two- and three-phonon
processes is shown in Fig. 5 (the four-phonon absorp-
tion structures are too weak to be displayed in this fig-
ure). The float zone c-Si is the purest commonly available
crystalline silicon free of the interstitial oxygen. The one-
phonon processes correspond to the localized vibrational
modes of the substitutional carbon in the Si lattice.

3.2 Excitons

Excitons are fermionic quasiparticles governed by the
Fermi–Dirac statistics

〈ne〉 = fFD(Ee, T ) =
1

exp
(

Ee−µ
kBT

)

+ 1
, (30)

where 〈ne〉 is the mean number of electrons in the given
single-particle state with the energy Ee and µ is the
chemical potential. In general, the chemical potential
changes with the temperature T but in many cases it
can be assumed to be constant with the value given by
the Fermi energy µ(T ) ≈ µ(0) = EF . Moreover, Fermi
energy can be set in arbitrary value, usually EF = 0.
The Fermi energy lies between the energies of the highest
occupied and the lowest unoccupied single-particle states
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in the ground state of the system, ie at T = 0. The num-
ber of electrons in the given state ne can be either 0 or
1, thus, the mean number of electrons is between 0 an 1
(see the red curves in Fig. 6). The temperature depen-

dencies are plotted for electrons fFD(Ee, T ) and holes

1− fFD(Ee, T ) in the conduction band (above the Fermi
energy). In the valence band (Ee − µ < 0) the curves
exhibit the opposite trend. If the single-electron state is
unoccupied n = 0, it is possible to say that in this state is
a hole. A complementary statistical factor 1−fBE(Ee, T )
expressing the probability that the single-electron state is
unoccupied can be defined for holes (see the green curves
in Fig. 6). Although, the number of electrons in the given
state fluctuates, the total number of the electrons in the
system is constant, ie each empty state below the Fermi
energy must be accompanied by a filled state above the
Fermi energy. The pairs of the unoccupied (holes) and
occupied (electrons) states are called excitons.
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Fig. 6. Fermi–Dirac statistical factor fFD(Ee, T ) as a function of
electron energy or temperature

The transitions of the electron between two specified
single-electron states differing by the energy E can be
stimulated by light. The transition of the system from
the lower to the higher energy state corresponds to the
photon absorption process, whereas the reverse transition
corresponds to the stimulated emission process. The prob-
abilities of both the processes are the same and, therefore,
the transition strength of the excitation process is given
by the occupation numbers of electrons and holes in the
initial and final states as follows

Fex(E, T ) ∝ E(T )
[

fFD(Ee, T )
(

1− fFD(Ee + E, T )
)

δ(|E| − Eex)

−fFD(Ee + E, T )
(

1− fFD(Ee, T )
)

δ(|E| − Eex)
]

≈ E(T ) δ(|E| − Eex).

(31)

The first positive term in the square brackets corresponds
to the absorption process and the second negative term
corresponds to the stimulated emission process. In the
thermodynamic equilibrium the size of the first positive
term is always larger than the size of the second negative
term, thus, the net strength is positive. This is not true for
non-equilibrium states of the system where the transition
strength function can be negative in some spectral region.
This is because the certain part of the system exhibits the
inverse population of electrons, which corresponds to the
negative T . Of course, the sum rules must be fulfilled
even for the non-equilibrium states, therefore, the total
transition strength must be positive. In dielectrics the
initial and final states of the interband transitions are suf-
ficiently far from the Fermi energy (the temperature 300
K corresponds to the energy 0.026 eV). This means that
the statistical factors of the first terms are close to unity
and the statistical factors of the second terms are close
to zero. Therefore, the interband transitions in dielectrics
are independent on the Fermi–Dirac statistical factors. Of
course, this statement is not valid for the interband tran-
sitions in metals or indirect intraband transitions in the
infrared region.

3.2.1 F r e e-c a r r i e r c o n t r i b u t i o n

The density of the holes Nh below and the density of
the electrons Ne above the Fermi energy depend strongly
on the Fermi–Dirac statistical factor:

Nh(T ) =

∫ EF

−∞

(

1− fFD(Ee, T )
)

De(Ee) dEe (32)

and

Ne(T ) =

∫ ∞

EF

fFD(Ee, T ) De(Ee) dEe , (33)

where De(Ee) is the electron density of states (DOS)
function. Since it must hold Nh(T ) = Ne(T ), it is evi-
dent that if the DOS function is asymmetrical owing to
the Fermi energy, then it is necessary to consider temper-
ature dependent chemical potential. Moreover, the DOS
functions are also slightly temperature dependent. Al-
though finding the temperature dependent model of the
density of free carriers can be relatively complicated task
in general, for specific materials it is possible to use a
relatively simple formulas based on certain simplifying
assumptions.

In the case of c-Si it possible to use the following as-
sumptions. The shape of the electron dispersion function
Ee(k) in the vicinity of the maximum of the valence
band is quadratic. The same is true for the minimum
of the conduction band. The DOS function of electrons
can be then approximated by two square root functions
positioned symmetrically around the Fermi energy, which
lies in the middle between the bands (see Fig. 7).

The density functions are shown in arbitrary units.
The functions Ne(Ee) and Nh(Ee) are scaled by factors
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introduced in the legend. The Fermi energy is assumed
to be in the middle of the bands and it corresponds to
the zero level, ie EF = 0. The red and green curves rep-
resent the Fermi-Dirac statistics of electrons and holes,
respectively. Moreover, it will be assumed that the DOS
function depends linearly only on the expansion factor
E(T ) and the processes involve only the creation or an-
nihilation of one phonon. The density of free carriers in
the valence and conduction bands is then proportional to
the following integral

Nfc(T ) ∝ E(T )

∫ ∞

Eg/2

fFD(Ee, T )
√

Ee − Eg/2 dEe

∝ E(T )
∞
∑

i=1

(−1)i−1

(

T

i

)3/2

exp

(

−
iEg

2kBT

)

, (34)

where Eg/2 is the distance of the bands from the
Fermi level. The free-carrier contribution corresponds
to the processes involving creation or annihilation of

phonons (indirect intraband transitions), thus, the transi-
tion strength is proportional to the density of free carriers
multiplied by the Bose-Einstein statistical factor repre-
senting the probability of the creation and annihilation
of one average phonon:

Nfc(T ) ∝ Nfc(T )
(

1 + 2fBE(Eph, T )
)

. (35)

For sufficiently small energies only the first term in ex-
pression for the integral (34) can be taken into account.
This is equivalent to neglecting the unity in the denom-
inator of the Fermi–Dirac statistical factor, which corre-
sponds to replacing the quantum-mechanical Fermi–Dirac
statistic by the classical Maxwell–Boltzmann statistic.
Moreover, the Bose–Einstein statistical factor in (35) can
be omitted at low temperatures. Under these assump-
tions the transition strength of free carriers in c-Si can be
modeled by the well known formula [24]

Nfc(T ) ∝ T 3/2 exp

(

−
Eg

2kBT

)

E(T ) . (36)

If this factor is rewritten with respect to the reference
temperature used in our dispersion model of c-Si, then
we arrive to the following simple form for the statistical
factor used in (22) for free carriers:

ffc(T ) =

(

T

TR

)3/2

exp

(

−
Eg(TR − T )

2kBTTR

)

. (37)

The model used for the normalized transition strength
function F 0

fc(E) is based on the modification of the Drude
formula [7, 11]. The influence of the free-carrier contribu-
tion on the transition strength function in the region of
phonon absorption is visible in Fig. 8 for curves calculated
at temperatures 500 and 600 K (compare with Fig. 4).
Since the energies of the optical phonons are comparable
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with the energies corresponding to these temperatures,
the revised version of c-Si includes the influence of the
Bose–Einstein statistical factor present in formula (35).
However, it should be noted that this change had only
very small influence on the accuracy of the dispersion
model.

3.2.2 I n d i r e c t i n t e r b a n d t r a n s i t i o n s i n
c r y s t a l s

In the case of dielectrics the influence of the Fermi–
Dirac statistical factors can be neglected, therefore, the
temperature dependence of the transition strength will be
determined only by the Bose–Einstein statistical factors
corresponding to creation and annihilation of phonons.
Since the energy of the phonon Eph contributes differ-
ently to the energy conservation law when the phonon is
created and annihilated, it is necessary to consider two
branches of the contributions differing only in the sign of
the phonon energy. The transition strength function for
both the branches can be expressed as:

FIDT(E, T ) =
N300K

IDT E(T )

1 + 2fBE(Eph, TR)

[

fBE(Eph, T ) F
0
IDT(E − Eph, T ) +

(

1 + fBE(Eph, T )
)

F 0
IDT(E + Eph, T )

]

,

(38)

where the first term corresponds to the process in which
the phonon is annihilated and the second term corre-
sponds to the process in which the phonon is created.
The normalized transition strength functions F 0

IDT(E ±
Eph, T ) are identical for both the terms, the only dif-
ference is in the sign of the Eph in their arguments.
This means that the two branches are mutually shifted
by the energy 2Eph . However, the strength of each of the
branches is governed by a different statistical factor. The
strength of the phonon creation branch (the second term)
is always higher than the strength of the phonon annihila-
tion branch (the first term), which completely disappears
at zero temperature.

The phonon energy Eph plays two roles in formula
(38). Firstly, it determines the temperature dependence
of the statistical factor. Secondly, it determines the shift
of the creation and the annihilation branches, which is
especially important for materials with the indirect band
gap. In these materials the absorption edge in the vicinity
of the band gap energy Eg has a complex shape and it
corresponds to a series of overlapping absorption edges. In
c-Si a relatively good model can be obtained using only
one phonon energy [23, 25], but a model using several
phonon energies provides more accurate description [11].
It is well known [23] that the indirect absorption edge in
c-Si is realized by electronic transitions from the Γ point
to the point near the X direction. Since the momentum in
the Γ point is zero, the momentum of the participating
phonons must correspond to the momentum near the X
point. In the work [11] three phonon energies correspond-
ing to frequencies fTO(X) , fL(X) and fTA(X) were con-

sidered. In the current version of c-Si it is assumed that

the momentum of the phonons does not correspond to

the X point but to a point slightly shifted towards the Γ

point. Since the degeneracy of the longitudinal phonons

disappears, four phonon energies corresponding to TO,

LO, LA and TA branches are used.

3.2.3 T r a n s i t i o n s i n v o l v i n g l o c a l i z e d

s t a t e s

There are various origins of the existence of localized

states in the condensed matter. The first class of local-

ized states is connected with the existence of defects such

as vacancies, impurities, dangling bonds etc. The transi-

tion strengths of these localized states are proportional

to the densities of defects and, therefore, their tempera-

ture dependencies are weak. In our models their temper-

ature dependencies are only through the expansion factor

E(T ). The second group of localized states is connected

with the disorder of atoms. The disorder of atoms in-

creases with the temperature due to the increase in the

phonon occupation numbers. These localized states also

exist in the ideal crystals without any defect at zero tem-

perature, because the nuclei fluctuate around the equi-

librium positions even in the ground state. Thus, the

transition strengths of the processes involving localized

states are described by the statistical factors which con-

tain the constant parts and also the temperature depen-

dent parts. The constant parts describe the first class of

the localized states and the contribution corresponding to

the ground state of the second class. The temperature de-

pendent parts, which are given by the ABESF, describe

the effect of the increasing disorder due to the thermal

motion of the nuclei. The statistical factor in (2) can be

written as

fut(T ) =
1

1 + C

[

1 + C
exp(Θ/TR)− 1

exp(Θ/T )− 1

]

, (39)

where the constant C and the average phonon tempera-

ture Θ describe the temperature dependent part.

In the c-Si the localized states represent a weak effect

which is observable only if special spectroscopic methods

are used (eg the deflection spectroscopy). In the current

model of c-Si the localized states are represented by the

weak Urbach tail corresponding to weak absorption below

the band gap. The Urbach tail was included into the

model on the basis of the transmittance measurements of

14 mm thick slab at the room temperature. Since only the

room temperature data were used, the transition strength

of the Urbach tail is given by the constant statistical

factor without the ABESF term, ie C = 0 in (39).
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3.2.4 H i g h e n e r g y e l e c t r o n e x c i t a t i o n s

The strengths of the excitations of the valence elec-

trons to the empty high energy electron states or the

excitations of the core electrons are not influenced by

the temperature dependent statistical factors. Therefore,

the temperature dependence of the transition strengths
of these excitations is only through the expansion fac-

tor. The high energy valence electron excitations can be

modeled by dispersion models based on the combination

of the Tauc’s law with the Lorentz model [26], which are

usually used for interband transitions. For example, the

Campi–Coriasso [27] dispersion model is appropriate if

accurate description in the X-ray region is not required.

The Lorentz model has the classical asymptotic behav-

ior for high energies which does not accurately describe

scattering processes in the X-ray region (see discussion in

[7]).

This part of the c-Si dispersion model is still under

development. The current version uses only simple models
with the classical asymptotic behavior describing both

the high energy valence electron excitations and the core

electrons excitations. The current model is correct in the

region of low energies and has no ambitions to describe

the dielectric response perfectly in the X-ray region (see

[11]).

3.2.5 D i r e c t i n t e r b a n d t r a n s i t i o n s i n

c r y s t a l s

It is not easy to describe the temperature dependence

of the direct interband transitions in crystals because the

temperature dependence due to the Fermi–Dirac statis-

tical factor is weak in comparison with the temperature

dependencies of the matrix elements. The temperature

dependencies of the matrix elements, especially the tem-
perature dependencies of the excitonic many body effects,

cause relatively strong redistribution of the transition

strength function but the integral value of the transition

strength is nearly temperature independent. The sum rule

can be used to express the temperature dependence of the

transition strength. The following formula can be derived

on the basis of (14), (17) and (22)

NDT(T ) =
[

N300K −

t6=DT
∑

t

N300K
t ft(T )

]

E(T ) . (40)

The first term in the square brackets represents the total

transition strength and the sum represents the total tran-

sition strength of all the contributions other than the di-

rect transitions (DT). Thus, the weak temperature depen-

dence of the transition strength of the direct transitions is

given by the expansion factor E(T ) and the temperature

dependencies of the other contributions. The formula (40)

represents the basic idea behind the temperature depen-

dent dispersion models in crystalline solids.

3.2.6 I n t e r b a n d t r a n s i t i o n s i n d i s o r d e r -
e d m a t e r i a l s

In disordered materials the direct transitions (transi-
tions not involving phonons) are indistinguishable from
indirect transitions (those involving phonons), therefore,
they are treated as one contribution to the dielectric re-
sponse. The basically same idea that was used to calcu-
late the strength of the direct transitions in crystalline
materials can be used for disordered condensed materi-
als, ie amorphous solids and liquids. The temperature de-
pendent transition strength of the interband transitions
(IBT) is described by the equation equivalent to (40) as

NIBT(T ) =
[

N300K −

t6=IBT
∑

t

N300K
t ft(T )

]

E(T ) . (41)

The normalized transition strength function of the dis-
ordered materials can be described using the models uni-
fying all the valence electron excitations, ie interband
transitions and the high energy excitations of valence
electrons. The examples of such models are the Campi–
Coriasso [27], Jellison–Modine [28, 29] (known as the
Tauc–Lorentz) or Ferlauto et al [30] (known as the Cody–
Lorentz) models, which combine the Tauc’s law and the
Lorentz model [26]. We should note that for the purposes
of our temperature dependent dispersion model it is nec-
essary to perform the proper sum rule normalization of
these models.

Nevertheless, it should be noted that in principle it
is possible to separate the interband transitions into the
valence to conduction band transitions and into the high
energy excitations of valence electrons since each of them
has different dependence on temperature. This separation
is convenient if the experimental data extending to the
synchrotron spectral region are processed [31-33].

4 Red shift of characteristic energies

The characteristic energies (critical point energies of
direct electron excitations, indirect band gap energies,
phonon energies, etc) usually decrease with the increas-
ing temperature, thus we are saying that they exhibit red
shift [34-38]. However, the opposite trend (blue shift) is
sometimes observed, for example, the shift of the band
gap energy of PbTe [39] or the shift of the phonon fre-
quency in the body-centered cubic molybdenum [40]. The
shifts of characteristic energies of electrons and phonons
are due to the thermal expansion (growing distances be-
tween the atoms) and as a consequence of the electron-
phonon [34] and phonon-phonon [40] interaction. These
effects depend approximately linearly on the phonon oc-
cupation numbers, therefore, the formulas based on the
ABESF can be used to model the temperature dependen-
cies of the characteristic energies.

In our c-Si model the temperature dependencies of the
band gap energy Eg and the critical point energies E1 ,
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Table 2. Values of the dispersion parameters used to calculate the
band gap and critical point energies

standard E0K
j E300K

j Θj model

notation (eV) (eV) (K) Eq.

E′

3(X) – 18.37 – (45)

E3(X) – 14.43 – (45)

E′′

2 (X) – 14.01 – (45)

E′

2(X) – 10.07 – (45)

E1(Γ) – 8.501 – (45)

E0(Σ) – 7.657 – (45)

E3(Σ) – 7.066 – (45)

E3(∆) 6.759 6.766 1016.0 (42)

E′

1(L) E′

1 5.347 5.307 739.1 (42)

E2(Σ) 4.456 4.384 – (43)

E2(X) E2 4.331 4.298 674.8 (42)

E1(K) 4.238 4.204 – (43)

E0(Γ) E0 – 4.023 – (45)

E1(L) E1 3.421 3.391 538.8 (42)

E′

0(Γ) E′

0 3.399 3.369 – (43)

Eg 1.134 1.086 382.9 (42)

E2(X), E
′
1 and E3(∆) are described using a simple three-

parametric model

Ej(T ) = E0K
j +

(

E300K
j − E0K

j

)exp(Θj/TR)− 1

exp(Θj/T )− 1
, (42)

where Θj is the average photon energy (temperature),

E0K
j and E300K

j are the band gap or critical point ener-

gies corresponding to the zero absolute temperature and
the reference temperature 300 K. Owing to the accuracy
of the optical measurements, it is sufficient to use the
formulas using only one ABESF term. The temperature
dependencies of the band gap and critical points energies

used in our c-Si model are depicted in Fig. 9. The depen-
dencies calculated using the formula (42) are plotted in
red color and the corresponding values of the parameters
are introduced in Tab. 2. The horizontal lines separate the
critical points into groups in which the energies Ej(T ) in
formulas (45) and (43) are calculated using the three-
parametric model (42) belonging to the same group.

In some cases the critical point energies lie very close
to each other (eg for the M0 type critical point E′

0 and
M1 type critical point E1(L) in c-Si) and their distance
decreases with the increasing temperature. In this case it
is necessary to ensure that the hierarchy of the critical
points energies is the same at all temperatures (E1(L) >
E′

0 ). The temperature dependencies of such two critical
point energies Ej(T ) and E′

j(T ) can be then described

by a five-parametric model.

The temperature dependence of the energy Ej(T ) is
modeled by formula (42) and the temperature depen-
dence of the energy E′

j(T ) is given by the following for-

mula

E′
j(T ) = Ej(T ) + (E′0K

j − E0K
j ) exp

(

−L
T

TR

)

, (43)

where E′0K
j and E′300K

j are the energies at 0 K and 300

K. The positive constant L is calculated as

L = ln

(

E′0K
j − E0K

j

E′300K
j − E300K

j

)

. (44)

In our c-Si model this formula is used for the critical
points energies E′

0 , E1(K) and E2(Σ) (see Fig. 9 and
Tab. 2), The experimental points are taken from Frey et

al work [41]. From the Fig. 9 it can be seen that the
dependencies calculated using (43) are almost parallel
with those calculated using (42). The critical point E0

is assumed to have the temperature dependence given by
the same ABESF term as E2 , ie the curves describing
their temperature dependencies are parallel. The remain-
ing critical points lying above E3(∆) are assumed to have
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the temperature dependencies given by the same ABESF
term as E3(∆). Thus, it is possible to define these criti-
cal points by introducing only one additional parameter
specifying the value at 300 K (see Tab. 2). The critical
point energies E′

j(T ) are then calculated as

E′
j(T ) = Ej(T ) + E′300K

j − E300K
j , (45)

where Ej(T ) is calculated using the formula (42).

Table 3. Values of the dispersion parameters of the temperature
dependent two-term Sellmeier formula (46) of c-Si determined by

fitting the Frey et al data [41]

j Nj (eV2 ) E0K
j (eV) E300K

j (eV) Θj (K)

1 273.563 4.38129 4.36617 592.56

2 23.447 3.24469 3.10798 208.97

The correctness of the formulas with only one ABESF
term can be also demonstrated on the temperature depen-
dence of the refractive index of c-Si in the near infrared
region where it is transparent. The Frey et al measured
the refractive index of the float zone c-Si prism using
the minimal deviation method with very low uncertainty
1×10−4 [41]. Their measurements were performed in the
helium cryostat from very low temperatures up to the
room temperature (see the experimental data from 30 to
295 K at the wavelength λ = 2µm in Fig. 10). In our pre-
vious paper [11] it was shown that it is possible to fit the
Frey’s data with very high accuracy by the temperature
dependent two-term Sellmeier formula

n2(E, T )− 1 =
2

π

2
∑

j=1

Nj

E2
j (T )− E2

, (46)

where the temperature dependencies of the energies
E2

j (T ) are modeled using the three-parametric formula

for the critical point energies (42). This model depends on
eight parameters introduced in Tab. 3. If it was assumed

that the temperature dependence of the refractive index
is given only by the expansion factor and the shifts of
the energies were disregarded, then the refractive index
at the wavelength 2µm would be calculated as

n(2µm, T ) = n(2µm, TR)
√

E(T ) . (47)

The calculated curve in Fig. 10 shows that this depen-
dence does not agree with the experimental data. This
is because it is not enough to consider the thermal ex-
pansion but the redistribution of the transition strength
and the shifts of the characteristic energies must also be
considered if we want to obtain the correct dependence
on the temperature.

The transitions strengths of the multi-phonon absorp-
tion and free-carrier contribution grow with temperature
on the expense of the transition strength of the interband
transitions of valence electrons. Both the thermal expan-
sion and the redistribution of the transition strength due
to the statistical factors predict that the refractive index
should decrease with the temperature in the transpar-
ent region. The increase in the refractive index can be
explained only by the red shift of the characteristic en-
ergies, which is, in general, the dominant effect in the
transparent region of dielectrics. In fact, the tempera-
ture dependence due to the expansion factor is neglected
in (46) and the temperature independent parameters Nj

are used.

While each critical point energy has its own average
phonon temperature determining its temperature depen-
dence, in the case of c-Si it is enough to consider only
one average phonon temperature to model the shifts of
phonon frequencies. Moreover, it is assumed that the ra-
tio fν of phonon frequency at 0 K and frequency at 300
K is the same for all the phonons. The following formula
is then used for frequencies νph(T ) of individual phonons

νph(T ) = ν300Kph

[

fν + (1− fν)
exp(Θ/TR)− 1

exp(Θ/T )− 1

]

, (48)

where ν300Kph is the phonon frequency at 300 K.

5 Temperature dependencies

of the broadening parameters

The two effects causing the broadening of the dielec-
tric functions are the finite life-time of the single-particle
states and the disorder in the materials. Since phonons
play a major role in the decay of the single-particle
states, the temperature dependence of this part, which
corresponds to the Lorentzian broadening in the case of
phonons and the Gaussian broadening for electronic exci-
tations, is given by the changes in the phonon occupation
numbers. Therefore, the ABESF formula can be used for
the broadening parameters

B(T ) = B0K +
(

B300K −B0K
)exp(Θ/TR)− 1

exp(Θ/T )− 1
, (49)
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where B0K and B300K are the values at 0 K and 300 K.
The broadening due to the disorder in the material, which
usually corresponds to the Gaussian broadening, can be
assumed to be independent on temperature.

In our c-Si model the Gaussian broadening with tem-
perature independent broadening factors was found to
be sufficient for interpreting the temperature dependent
experimental data in the region of the two- and three-
phonon absorption. This shows that the disorder due to
the random distribution of different isotopes in the crys-
tal lattice is the dominant effect. The direct interband
transitions of valence electrons were modeled using the
Gaussian broadening with the temperature dependence
of the broadening factors given by (49).

6 Temperature dependence

of the Urbach energy

The increasing disorder due to the thermal motion of
the nuclei affects not only the transition strength of the
Urbach tail (see section 3.2.3) but also the Urbach energy.
Therefore, the temperature dependence of the Urbach
energy can be modeled by means of one ABESF term
as follows

Eu(T ) = E0K
u +

(

E300K
u − E0K

u

)exp(Θ/TR)− 1

exp(Θ/T )− 1
. (50)

7 Temperature dependencies

of the matrix elements

The temperature dependence of the direct interband
transitions cannot be modeled correctly if the matrix el-
ements are assumed to be temperature independent be-
cause the matrix elements are sensitive to the changes in
the band structure. The empirical formulas must be used
to model the spectral redistribution of the normalized
transition strength function of direct transitions. In our
c-Si model we use empirical approach based on the cubic
splines. In order to ensure that the transition strengths of
the individual contributions are always positive, the cu-
bic splines are used to interpolate the logarithms of the
weights of the individual contributions (see weights Ai in
[7]).

The many body effects also influence the spectral re-
distribution of the normalized transition strength of di-
rect transitions. The strength of attraction between the
electron–hole pairs is in our model [7] characterized by the
Rydberg parameters. Since it was not possible to deter-
mine their temperature dependencies on the basis of the
available experimental data, it was assumed that these
parameters are constant in our c-Si model.

8 Conclusion

The main aim of this work was to discuss the ideas
for modeling the temperature dependencies of transition

strengths corresponding to the elementary phonon and
electron excitations. It was shown that the temperature
dependence of the total transition strength is given solely
by the expansion factor, which expresses the changes in
the density of particles. The distribution of the total tran-
sition strength among the individual contributions is con-
trolled by the statistical factors, which are derived on
the basis of the Bose–Einstein and Fermi–Dirac statis-
tics of the quasiparticles participating in the absorption
processes. The models describing the red shift of char-
acteristic energies and the temperature dependencies of
the broadening parameters, Urbach energy and matrix
elements were also discussed.

While the temperature dependencies of the transition
strengths of the individual absorption processes were de-
scribed in detail, the concrete forms of the correspond-
ing normalized transition strength functions were not dis-
cussed. The overview of the models representing the ele-
mentary excitations can be found in [7].

The presented ideas are used in our temperature de-
pendent dispersion model of c-Si. This model is accurate
enough to replace the tabulated values of the optical con-
stants of silicon wafers used to interpret the temperature
dependent experimental data in the optical characteriza-
tion of thin films.
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of dielectric response and sum rule conservation”, Thin Solid

Films, vol. 571, pp. 496–501, 2014.
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