MAGNETOPOLYMERS FOR EMI SUPPRESSION IN PORTABLE AND WIRELESS ELECTRONICS

The complex permeability spectra of ferrite–polymer composites have been measured in the frequency range 1 kHz – 1 GHz using short–circuit coaxial transmission line method and the effect of particle size and ferrite volume content was studied. The ferrite filler had the chemical composition Ni0.27Zn0.54Fe2O4 and was synthesized by means of a ceramic method at 1200 °C/6 h in air. As the non–magnetic matrix, polyvinylchloride (PVC) polymer has been used. The frequency dispersion of permeability was due to a resonance of oscillating domain walls and a natural ferromagnetic resonance of precessing magnetic moments in domains. The permeability of composites seems to be strongly dependent on ferrite volume content and weakly on particle size. Based on the theoretical calculation of return loss (RL), the quasi–microwave absorption properties of the ferrite–polymer composites have been investigated in the frequency range concerned. In the developed single–layer EM–wave absorbers, the return loss as well as the matching thickness (dm), matching frequency (fm), and bandwidth for RL ≤ – 15 dB were affected by changes in ferrite particle size and volume content. The results indicate that the magnetopolymers have significant potential for quasi–microwave absorption applications in mobile electronic industry.

Keywords: complex permeability, domain wall, magnetopolymer, return loss, matching thickness, EM–wave absorber

1 INTRODUCTION

As a result of fast development of mobile communication industry, the importance of reduction of electromagnetic interference (EMI) between electromagnetic wave (EM–wave) radiating systems (mobile phones, wireless LAN systems, Bluetooth devices, Fig. 1) and devices such as LSI, CPU, etc., play a significant role.

This has given a priority towards research of various materials which can be used as microwave absorbers and/or shields. Among the candidates for such applications, soft metallic magnets, polycrystalline spinel or hexagonal ferrites, and ferrite–epoxy composites [1, 2] present a kind of interesting materials. For magnetic EM–wave absorbers, the complex permeability μ* = μ’ − jμ″ (and also complex permittivity ε* = ε’ − jε″) of materials determine reflection and attenuation characteristics of absorbers. Because the matching thickness dm is inversely proportional to a product of fmmμ″ (dm = 1/fmmμ″) with fm the matching frequency and the maximum μ* value induced by natural resonance phenomenon is proportional to the ratio of saturation magnetization Ms and effective anisotropy field Han (μ* = Mm/Han), the dm is inversely proportional to Ms. Since soft metallic magnetic materials have large Ms and the Snoek’s limit is localized at a high frequency [3, 4], their μ* value remain high over a wide frequency range. Therefore, it is possible to make thin absorbers from such kinds of materials. However, the high–frequency permeability of soft metallic magnets and also some kinds of spinel ferrites such as MnZn decreases due to the eddy current loss induced by EM–waves. For this reason, it is better to use smaller particles which are isolated by insulating non–magnetic materials, such as epoxy resin or polyvinylchloride (PVC). We have investigated ferrite–polymer composite materials based on PVC polymeric matrix and various types of ferrite fillers: NiZn, MnZn and LiZn [3–6], and have found out that the complex permeability had a characteristic frequency dispersion and was attributed to two kinds of resonance mechanisms: the resonance of vibrating domain walls and the natural ferromagnetic resonance of rotating magnetic moments in domains. In most cases, the dispersion of permeability of sintered materials (such as ferrites) was of a resonance type and changed to a relaxation type of dispersion in the case of ferrite–polymer composites. We have also studied the EM–wave absorbing properties of some NiZn ferrite – PVC polymer composites [3, 4] only as a function of ferrite content and found these materials as good candidates for single–layer absorber design.

In this work, more detailed study is carried out to investigate the effects of particle size and ferrite filler con-

* Department of Electromagnetic Theory, Slovak University of Technology, Faculty of Electrical Engineering and Information Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia, e-mail: rastislav.dosoudil@stuba.sk

ISSN 1335-3632 © 2006 FEI STU
tent in composites (based on NiZnCu spinel ferrite and PVC polymeric matrix) on their complex permeability spectra and EM–wave absorption properties (using a short–circuit coaxial transmission line measurement method) in the frequency interval of 1 kHz to 1 GHz. Simple computer simulations made in the MATHCAD environment has been used to design of single–layer absorbers for EMI suppression.

2 EXPERIMENTAL

The polycrystalline NiZnCu spinel ferrite of composition Ni$_{0.75}$Zn$_{0.64}$Cu$_{0.64}$Fe$_2$O$_4$ prepared in the sintered and also powder form by a ceramic method at 1200 °C/6 h in air has been used as ferrite filler. The ferrite–polymer composites have been prepared from the ferrite powder and PVC matrix by the dry pressing method (at a temperature of 135 °C and at a pressure of about 5 MPa). Two sets of composites were made to examine the effects of the ferrite particle size and the ferrite volume content on permeability and EM–wave absorbing properties: (1) constant particle size 0–250 µm and different filler volume concentrations 10, 20, 30, 40, 50, 55 and 60 vol%, and (2) constant ferrite volume concentration 60 vol% and different particle sizes 0–25, 25–40, 40–80, 80–160 and 160–250 µm. In order to obtain complex permeability spectra, all the prepared samples were prepared in the toroidal form with an inner diameter of 3.4 mm, an outer diameter of 7 mm and a height of 3 mm. Complex permeability of sintered ferrite and composites was measured by means of a coaxial line method in the frequency range of 1 kHz to 1 GHz using two different analyzers (HP 4192A and HP 4191A).

3 THEORY OF EM–WAVE ABSORBER FOR UHF BAND

Ferrite–polymer composites are used as electromagnetic wave absorbers thanks to their losses at higher frequencies. It has been shown [3] that these losses are very useful for the construction of a thin EM–wave absorber for high frequency band in the form shown in Fig. 2.

![Fig. 2. The principle of an electromagnetic wave absorber.](image)

The frequency of the incident wave and the thickness at which ferrite polymer composite material in contact with a highly conductive metal plate becomes an absorber, are called the matching frequency f_m and matching thickness d_{m}, respectively. One of the most important problems in this application is how small a thickness, d_m, is possible. To solve this, knowledge of the complex permeability/permittivity spectra of composite materials is required.

With respect to the structure shown in Fig. 2, the input impedance (Z_{in}) at the air–material interface is given by $Z_{in} = Z_0 (\mu^*/\varepsilon^*)^{1/2} \tanh(\pi d/\lambda)$, where $Z_0 = (\mu_0/\varepsilon_0)^{1/2} = 377 \Omega$ is the characteristic impedance of free space, μ^* and ε^* are the complex relative permeability and permittivity, μ_0 and ε_0 are the permeability and permittivity of free space, respectively, and $\gamma = j(\omega/c)(\mu^*/\varepsilon^*)^{1/2}$ is the propagation factor in the material. By assuming that the thickness of the absorber d is small enough compared with the wavelength λ of the incident TEM wave, the input impedance Z_{in} can be calculated with the equation:

$$Z_{in} = j\lambda Z_0^* \omega / c$$ (1)

The reflection coefficient Γ^* and return loss (or power reflectivity) RL (in decibel, dB) are given by:

$$\Gamma^* = (Z_{in} - Z_0)/(Z_{in} + Z_0) \quad RL = 20\log |\Gamma^*|$$ (2.3)

It can be seen from the above relation for Γ^* that the principle of the metal–backed single–layer absorber is to make use of the reflection reduction by impedance matching, in which the normalized input impedance with respect to the impedance of free space (Z_0/Z_0) should be 1 for no reflection. Therefore, the matching condition for the perpendicular incidence of the TEM wave is given as:

$$(\mu^*/\varepsilon^*)^{1/2} \tanh[j2\pi d(\mu^*/\varepsilon^*)^{1/2}/\lambda] = 1$$ (4)

where λ is the free space wavelength. If λ and/or d are so small that $[2\pi d(\mu^*/\varepsilon^*)^{1/2}/\lambda] << 1$, we are allowed to approximate Eq.(4) to:

$$j2\pi d(\mu^*/\varepsilon^*)^{1/2}/\lambda = 1$$ (5)

Introducing the expression $\mu^* = \mu' - j\mu''$ and rearranging Eq.(5), we obtain the following relationships:

$$\mu' = 0 \quad \text{and} \quad \mu'' = \lambda/2\pi d$$ (6,7)

The equations involved in formulas (6,7) indicate that we are able to realize a matched absorber with a frequency or wavelength such that it will yield μ' sufficiently less than μ'', provided the thickness d is given by:

$$d = d_m = \lambda/2\pi \mu''' = c/2\pi f_m \mu'''(f_m)$$ (8)

where relationship $f_m\lambda = c$ (with c the velocity of light) is taken into account and $\mu'''(f_m)$ indicates the value of μ'' at f of f_m. The product of $f_m\mu'''(f_m)$ is equivalent to the Snoek’s limit $S = (\mu' - 1) f_m$ [3, 4] with μ' the real part of complex (relative) permeability at $f = 0$ and f_m the natural resonance frequency (at which the μ''' has its minimum value). Thus, the Eq.(8) can be modiﬁed as follows:

$$d_m = c/2\pi S$$ (9)

We used the Eqs.(1–3,8,9) to make a computer program in MATHCAD environment for the design of single–layer absorbers based on prepared composites.
4 RESULTS AND DISCUSSION

Figure 3 shows the complex–plane permeability spectrum \(\mu^* = \mu' - j\mu'' \) for the sintered Ni\(_{0.27}\)Zn\(_{0.36}\)Cu\(_{0.08}\)Fe\(_2\)O\(_4\) ferrite. The real part \(\mu' \), which is about 1418 at low frequencies, starts to decrease at about 1 MHz. The imaginary part \(\mu'' \) has a maximum of about 573 at around 2.5 MHz. As the frequency rises, the \(\mu' \) remains level at first and then rises to a shallow peak before falling to relatively low values. The loss component, \(\mu'' \), rises to a pronounced peak as \(\mu' \) falls. This dispersion of permeability is principally due to the natural ferromagnetic resonance (magnetic moment precession resonance). Because there is a distribution of domain magnetizations in unsaturated sintered ferrite, the precession resonance is rather broad. In this case also the domain wall motion contributes to the magnetization process, so wall resonance (or relaxation) contributes to permeability spectrum in this frequency region.

![Complex–plane permeability spectrum of Ni\(_{0.27}\)Zn\(_{0.36}\)Cu\(_{0.08}\)Fe\(_2\)O\(_4\) sintered ferrite.](image)

Figures 4 and 5 illustrate the complex–plane permeability spectra for NiZnCu ferrite – PVC polymer composites. We can observe a relaxation type of frequency dispersion, which is probably due to the resonance of vibrating domain walls and the natural ferromagnetic resonance of precessing magnetic moments in domains. The values of \(\mu' \) raise with the filler content but not very much with the filler particle size. Accordingly, the \(\mu^* \) of composites seems to be affected more by the filler content than by the filler particle size. The resonance frequency \(f_{\text{res}} \) (at which \(\mu'' \) has its maximum) of magnetopolymers shifts toward higher frequencies with decreasing of filler concentration. This is attributed to the demagnetizing field \(H_{\text{D}} \) formatted by magnetic poles in the surfaces of filler particles in the composite, which leads to increase of resonance frequency according to the equation: \(f_{\text{res}} = \frac{\mu_0 (H_a + H_{\text{D}})}{2\pi} \), with \(\mu_0 = 4\pi \times 10^{-7} \) H/m the permeability of free space, \(\gamma \) the gyromagnetic ratio, and \(H_a \) the magnetocrystalline anisotropy field. This is favourable for microwave surface impedance match in the single–layer EM–wave absorber design because the wavelength in quasi–microwave absorber decreases as the frequency increases.

Figures 6 and 7 present the calculated EM–wave absorbing properties (return loss \(RL \) in dB as a function of frequency) for two sets of composites (Fig. 6 for a fixed filler particle size and Fig. 7 for fixed filler content) by using the measured complex permeability spectra of magnetopolymers.

![Complex–plane permeability spectra for NiZnCu ferrite + PVC polymer at a fixed filler particle size <D> = 0–250 \(\mu m \).](image)

![Complex–plane permeability spectra for NiZnCu ferrite + PVC polymer at a fixed filler volume content \(\kappa_v = 60 \text{ vol} \% \).](image)

The return loss of magnetopolymers is found to depend sensitively on both the filler concentration and filler particle size; the minimum of return loss shifts to high frequency when the filler concentration as well as filler particle size decreases. Also the matching frequency \(f_{\text{m}} \) (at which \(RL \) has its minimum), the matching thickness \(d_{\text{m}} \) and the bandwidth \(\Delta f \) for \(RL \leq -15 \) dB were influenced by changes in both the ferrite volume content and ferrite particle size.

The reason for \(d_{\text{m}} \) (and also \(f_{\text{m}} \)) variation in composites according to filler size and fraction can be found in the basic principles for designing absorbers. The following relationship between \(d_{\text{m}} \) and \(\mu^* = \mu' - j\mu'' \) can be written [2]:

\[
\frac{1}{d_{\text{m}}} = \frac{1}{d} + \frac{1}{d_{\text{f}}} + \frac{1}{d_{\text{m}}} + \frac{1}{d_{\text{m}}}
\]

where \(d \) is the wavelength in free space, \(d_{\text{f}} \) is the filler particle size, and \(d_{\text{m}} \) is the matching thickness.
This equation states that d_m is affected (mainly) by μ' and f_m. From figs. 4–7 it follows that increasing filler particle size and fraction causes the increase of μ', which results in the decrease of f_m and d_m value.

5 CONCLUSIONS

The frequency dispersion of complex permeability for NiZnCu ferrite–PVC polymer composite materials has been studied using coaxial transmission line measurement method in the frequency range 1 kHz – 1 GHz. The resonance type of permeability dispersion was observed in the sintered ferrite filler compared to a relaxation type one obtained in composites. The observed frequency dispersions in both the sintered ferrite and composites were originated by the resonance of vibrating domain walls and rotating magnetization vectors in domains. The real part of complex permeability at low frequencies decreased and the resonance/relaxation frequency shifted towards the higher frequency region with the decrease of ferrite particle size and fraction by introducing the demagnetizing field in composites. We have also investigated EM–wave absorbing properties on prepared composites using derived formulas. The most significant result of this study is to provide an effective technique to determine the quasi–microwave absorbing properties from the intrinsic material parameters including the real and imaginary components of complex permeability. The prepared composites can be used for attenuating electromagnetic interference (EMI) in computers and related products (portable and wireless communication electronics, i.e. mobile phones and communicators), switching power supplies, electronic automotive ignition systems, garage doors openers, etc. The EMI suppressor (i.e. composite), suitable also for reducing or eliminating conducted EMI on printed circuit boards (PCB) in wiring and cables, introduces into the circuit a frequency variable impedance and does not affect the lower operating signals but blocks the conduction of the EMI noise frequencies.

Acknowledgement

This work was supported by VG-3096-Slá-SK1 grant of VEGA agency of the Slovak Republic.

REFERENCES

Received 10 November 2006