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FRACTIONAL – ORDER FEEDBACK CONTROL
OF A DC MOTOR

Ivo Petráš
∗

This paper deals with the feedback control of a DC motor speed with using the fractional-order controller. The permanent-
magnet DC motor is often used in mechatronic and other fields of control theory and therefore its control is very important.
The mathematical description of the fractional - order controller and its implementation in the analogue and the discrete
domains is presented. An example of simulation and possible realization of the particular case of digital fractional-order

PIλDδ controller are shown as well. The hardware realization is proposed in digital form with the microprocessor and in
analogue form with the fractance circuits.
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1 INTRODUCTION

The DC motor is a power actuator, which converts di-
rect current electrical energy into rotational mechanical
energy. The DC motors are still often used in industry
and in numerous control applications, robotic manipula-
tors and commercial applications such as disk drive, tape
motor as well.

We will consider the armature - controlled DC motor
utilizes a constant field current. This kind of the DC mo-
tor will be controlled by a nonconventional control tech-
nique which is known as a fractional-order control. Men-
tioned technique was developed during last few decades
and there are various practical applications as for exam-
ple flexible spacecraft attitude control [25], car suspen-
sion control [29], temperature control [32], motor control
[51], etc. This idea of the fractional calculus application
to control theory was described in many other works (eg:
[4], [15], [31], [38], etc) and its advantages were proved as
well. All these works used the continuous models based
on fractional differential equations or transfer function.
For practical application of the fractional-order models
in control and for realization of the fractional-order con-
trollers (FOC), we need discrete fractional-order models.
It is also well known that the fractional-order systems
have an unlimited memory (infinite dimensional) while
the integer-order systems have a limited memory (finite
dimensional). It is important to approximately describe
the fractional-order systems using a finite difference equa-
tions. We will consider new discretization technique pro-
posed by Chen et al in [12]. Obtained discrete version
of fractional order controller will be implemented by a
microprocessor and proposed to the DC motor control.

This article is organized as follow: In section 2, we
present a brief introduction to fractional calculus and its
approximation. Section 3 presents mathematical model
of DC motor as a controlled object. Section 4 deals with

fractional order control. Section 5 presents some simula-
tion results. Section 6 treats of proposal to digital and
analogue realization of the FOC. Section 7 concludes this
paper by some remarks and conclusions.

2 FUNDAMENTALS OF

FRACTIONAL CALCULUS

2.1 A bit of history and definitions

Fractional calculus is a generalization of integration
and differentiation to non-integer (fractional) order fun-
damental operator aDr

t , where a and t are the limits and
(r ∈ R) is the order of the operation. There are several
definition of fractional integration and differentiation (see
[28], [29], [39]). The most often used are the Grünwald-
Letnikov (GL) definition and the Riemann-Liuville defi-
nition (RL). For a wide class of functions, the two defini-
tions – GL and RL – are equivalent [39].

The GL is given as

aDr
t f(t) = lim

h→0
h−r

[ t−a

h
]∑

j=0

(−1)j

(
r

j

)
f(t − jh), (1)

where [·] means the integer part. The RL definition is
given as

aDr
t f(t) =

1

Γ(n − r)

dn

dtn

∫ t

a

f(τ)

(t − τ)r−n+1
dτ , (2)

for (n − 1 < r < n) and where Γ(·) is the Gamma

function.

For many engineering applications the Laplace trans-
form methods are often used. The Laplace transform of
the GL and RL fractional derivative/integral, under zero
initial conditions for order r is given by [28]:

L- {aD
±r
t f(t); s} = s±rF (s) . (3)
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Fig. 1. Bode’s ideal loop

Fig. 2. Bode plots of transfer function Go(s) in (5)

Some other important properties of the fractional
derivatives and integrals can be found in several works
([28],[ 29], [39], etc).

Geometric and physical interpretation of fractional in-
tegration and fractional differentiation were exactly de-
scribed in [40].

2.2 Bode’s ideal loop as a reference model

H. W. Bode suggested an ideal shape of the loop trans-
fer function in his work on design of feedback amplifiers
in 1945. Ideal loop transfer function has form [7]:

L(s) =
( s

ωgc

)α

, (4)

where ωgc is desired crossover frequency and α is slope
of the ideal cut-off characteristic.

Phase margin is Φm = π(1+α/2) for all values of the
gain. The amplitude margin Am is infinity. The constant
phase margin 60o , 45o and 30o correspond to the slopes
α = −1.33, −1.5 and −1.66.

The Nyquist curve for ideal Bode transfer function is
simply a straight line through the origin with
arg(L(jω)) = απ/2.

Bode’s transfer function (4) can be used as a reference
system in the following form [3], [24], [36], [41], [50]:

Gc(s) =
K

sα + K
, Go(s) =

K

sα
, (0 < α < 2), (5)

where Gc(s) is transfer function of closed loop and Go(s)
is transfer function in open loop.

General characteristics of Bode’s ideal transfer func-
tion are:

(a) Open loop:

• Magnitude: constant slope of −α20 dB/dec;

• Crossover frequency: a function of K;

• Phase: horizontal line of −απ
2 ;

• Nyquist: straight line at argument −απ
2 .

(b) Closed loop:

• Gain margin: Am = ∞ ;

• Phase margin: constant : Φm = π
(
1 − α

2

)
;

• Step response:

y(t) = KtαEα,α+1 (−Ktα) ,

where Ea,b(z) is the Mittag-Leffler function of two
parameters [38].

2.3 Continuous time approximation of fractional

calculus

A detailed review of the various approximation meth-
ods and techniques for continuous and discrete fractional-
order models in form of IIR and FIR filters was done in
work [45].

For simulation purpose, here we present the Oustaloup’s
approximation algorithm [29], [30]. The method is based
on the approximation of a function of the form:

H(s) = sr, r ∈ R, r ∈ [−1; 1] (6)

for the frequency range selected as (ωb, ωh) by a rational
function:

Ĥ(s) = Co

N∏

k=−N

s + ω′
k

s + ωk

(7)

using the following set of synthesis formulas for zeros,
poles and the gain:

ω′

k = ωb

(ωh

ωb

) k+N+0.5(1−r)
2N+1

,

ωk = ωb

(ωh

ωb

) k+N+0.5(1−r)
2N+1

, (8)

Co =
(ωh

ωb

)−
r

2
N∏

k=−N

ωk

ω′

k

, (9)

where ωh, ωb are the high and low transitional frequen-
cies. An implementation of this algorithm in Matlab as a
function script ora foc() is given in [14].

Using the described Oustaloup-Recursive-Approxi-
mation (ORA) method with:

ωh = 103, ωb = 10−3, (10)

the obtained approximation for fractional function

H(s) = s−
1
2 is:

Ĥ5(s) =

s5 + 74.97s4 + 768.5s3 + 1218s2 + 298.5s + 10

10s5 + 298.5s4 + 1218s3 + 768.5s2 + 74.97s + 1
. (11)

The Bode plots and the unit step response of the ap-
proximated fractional order integrator (11) are depicted
in Fig. 3. Bode plots can be compared with the ideal plots
depicted in Fig. 2.
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Fig. 3. Characteristics of approximated fractional order integrator (11): Bode plots for r = −0.5 and N = 5 (left), Unit step response
for r = −0.5 and N = 5 (right)

2.4 Discrete time approximation of fractional

calculus

In general, the discretization of fractional-order differ-
entiator/integrator s±r (r ∈ R) can be expressed by the

so-called generating function s ≈ ω(z−1). This generat-
ing function and its expansion determine both the form
of the approximation and the coefficients [19].

As a generating function ω(z−1) can be used in gen-
erally the following formula [6]:

ω(z−1) =
( 1

βT

1 − z−1

γ + (1 − γ)z−1

)
, (12)

where β and γ are denoted the gain and phase tuning
parameters, respectively. For example, when β = 1 and
γ = {0, 1/2, 7/8, 1, 3/2} , the generating function (12)
becomes the forward Euler, the Tustin, the Al-Alaoui, the
backward Euler, the implicit Adams rules, respectively. In
this sense the generating formula can be tuned precisely.

The expansion of the generating functions can be done
by Power Series Expansion (PSE) or Continued Fraction
Expansion (CFE).

It is very important to note that PSE scheme leads to
approximations in the form of polynomials, that is, the
discretized fractional order derivative is in the form of
FIR filters, which have only zeros.

Taking into account that our aim is to obtain discrete
equivalents to the fractional integrodifferential operators
in the Laplace domain, s±r , the following considerations
have to be made [46]:

1. sr , (0 < r < 1), viewed as an operator, has a branch
cut along the negative real axis for arguments of s on
(−π, π) but is free of poles and zeros.

2. It is well known that, for interpolation or evaluation
purposes, rational functions are sometimes superior to
polynomials, roughly speaking, because of their abil-
ity to model functions with zeros and poles. In other
words, for evaluation purposes, rational approxima-
tions frequently converge much more rapidly than PSE

and have a wider domain of convergence in the com-
plex plane.

In this paper, for directly discretizing sr , (0 < r < 1),
we shall concentrate on the IIR form of discretization
where as a generating function we will adopt an Al-Alaoui
idea on mixed scheme of Euler and Tustin operators [1],
[2] but we will use a different ration between both oper-
ators. The mentioned new operator, raised to power ±r ,
has the form [34]:

(ω(z−1))±r =
(1 + a

T

1 − z−1

1 + az−1

)±r

, (13)

where a is ratio term and r is fractional order. The ratio
term a is the amount of phase shift and this tuning knob
is sufficient for most solved engineering problems.

In expanding the above in rational functions, we will
use the CFE. It should be pointed out that, for control
applications, the obtained approximate discrete-time ra-
tional transfer function should be stable and minimum
phase. Furthermore, for a better fit to the continuous fre-
quency response, it would be of high interest to obtain
discrete approximations with poles an zeros interlaced
along the line z ∈ (−1, 1) of the z plane. The direct dis-
cretization approximations proposed in this paper enjoy
the desirable properties.

The result of such approximation for an irrational

function, Ĝ(z−1), can be expressed by G(z−1) in the
CFE form [46]:

G(z−1) ≃

a0(z
−1) +

b1(z
−1)

a1(z−1) + b2(z−1)

a2(z−1)+
b3(z−1)

a3(z−1)+...

= a0(z
−1) +

b1(z
−1)

a1(z−1)+

b2(z
−1)

a2(z−1)+
. . .

b3(z
−1)

a3(z−1)+
. . .

(14)

where ai and bi are either rational functions of the vari-
able z−1 or constants. The application of the method
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Fig. 4. Characteristics of approximated fractional order differentiator (16): Bode plots for r = 0.5, n = 5, a = 1/3, and T = 0.001 s in
(15) (left), Unit step responses for r = 0.5, n = 5, a = 1/3, and T = 0.001 s in (15) (right)

Fig. 5. Characteristics of approximated fractional order integrator (17): Bode plots for r = −0.5, n = 5, a = 1/3, and T = 0.001 s in
(15) (left), Unit step responses for r = −0.5, n = 5, a = 1/3, and T = 0.001 s in (15) (right)

yields a rational function, G(z−1), which is an approxi-

mation of the irrational function Ĝ(z−1).

The resulting discrete transfer function, approximat-

ing fractional-order operators, can be expressed as:

(ω(z−1))±r ≈
(1 + a

T

)±r

CFE
{( 1 − z−1

1 + az−1

)±r}

p,q

=
(1 + a

T

)±r Pp(z
−1)

Qq(z−1)
, (15)

=
(1 + a

T

)±r p0 + p1z
−1 + · · · + pmz−p

q0 + q1z−1 + · · · + qnz−q
,

where CFE{u} denotes the continued fraction expansion

of u ; p and q are the orders of the approximation and

P and Q are polynomials of degrees p and q . Normally,

we can set p = q = n .

In Matlab Symbolic Toolbox, by the following script,

for a given n we can easily get the approximated direct

discretization of fractional order derivative (let us denote

that x = z−1 ):

syms r a x;maple(’with(numtheory)’);

f = ((1-x)/(1+a*x))^r;;

n=5; n2=2*n;

maple([’cfe := cfrac(’ char(f) ’,x,n2);’])

pq=maple(’P over Q := nthconver’,’cfe’,n2)

p0=maple(’P := nthnumer’,’cfe’,n2)

q0=maple(’Q := nthdenom’,’cfe’,n2)

p=(p0(5:length(p0)));q=(q0(5:length(q0)));

p1=collect(sym(p),x)

q1=collect(sym(q),x)

Modified and improved digital fractional-order differen-
tiator using fractional sample delay and digital integrator
using recursive Romberg integration rule and fractional
order delay as well has been described in [42].

Some others solutions for design IIR approximation us-
ing least-squares eg: the Padé approximation, the Prony’s
method and the Shranks’ method were described in [6].
The Prony and Shranks methods can produce better ap-
proximations the widely used CFE method. The Padé and
the CFE methods yield the same approximation (causal,
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Fig. 6. General model of a DC motor

Fig. 7. Mathematical model of a DC motor

stable and minimum phase). Different approach of the
CFE method was used in [23].

Here we present some results for fractional order r =
±0.5 (half order derivative/integral). The value of ap-
proximation order n is truncated to n = 5 and weighting
factor a was chosen a = 1/3. Assume sampling period
T = 0.001 s.

For r = 0.5 we have the following approximation of
the fractional half-order derivative:

G(z−1) =
985.9 − 1315z−1 + 328.6z−2 + 36.51z−3

27 − 18z−1 − 3z−2 + z−3
(16)

The Bode plots and unit step response of the digi-
tal fractional order differentiator (16) and the analytical
continuous solution of a fractional semi-derivative are de-
picted in Fig. 4. Poles and zeros of the transfer function
(16) lie in a unit circle.

For r = −0.5 we have the following approximation of
the fractional half-order integral:

G(z−1) =
0.739− 0.493z−1− 0.0822z−2+ 0.0274z−3

27 − 36z−1 + 9z−2 + z−3

(17)

The Bode plots and unit step response of the digital
fractional order integrator (17) and the analytical contin-
uous solution of a fractional semi-derivative are depicted
in Fig. 5. Poles and zeros of the transfer function (17) lie
in a unit circle.

3 MODEL OF A DC MOTOR

We will consider the general model of the DC motor
(DCM) which is depicted in Fig. 6. The applied voltage
Va controls the angular velocity ω(t).

The relations for the armature controlled DC motor
are shown schematically in Fig. 7. Transfer function (with
Td(s) = 0) has the form [16]:

GDCM (s) =
θ(s)

Va(s)
=

Km

s[(Ls + R)(Js + Kf) + KbKm]
.

(18)
However, for many DCM the time constant of the ar-
mature is negligible and therefore we can simplify model
(18). A simplified continuous mathematical model has the
following form:

GDCM (s) =
θ(s)

Va(s)
=

Km

s[R(Js + Kf) + KbKm]

=
[Km/(RKf + KbKm)]

s(τs + 1)
=

KDCM

s(τs + 1)
, (19)

where the time constant τ = RJ/(RKf + KbKm) and
KDCM = Km/(RKf + KbKm). It is of interest to note
that Km = Kb .

This mini DC motor with model number PPN13KA12C
is great for robots, remote control applications, CD and
DVD mechanics, etc. Specifications are [21]: min. volt-
age 1.5 V, nominal voltage 2 V, max. voltage 2.5 V, max.
rated current 0.08 A, no load speed 3830 r/min and
rated load speed 3315 r/min. For our mini DC motor
the physical constants are: R = 6 Ω, Km = Kb = 0.1,
Kf = 0.2 Nms and J = 0.01 kgm2/s2 . For these motor
constants the transfer function (19) of the DC motor has
the form:

GDCM (s) =
0.08

s(0.05s + 1)
. (20)

Discrete mathematical model of the DC motor (20)
obtained via new discretization method (13), for sampling
period T = 0.001 s and a = 1/3, has the following form:

GDCM (z−1) =

8.89 × 10−3z−2 + 0.053z−1 + 0.08

8.844 × 104z−2 − 1.787 × 105z−1 + 9.022× 104
. (21)

In Fig. 8 is depicted the comparison of the continues
(20) and dicsrete (21) model of the DC motor. As we can
observe in figures, both models have a good agreement.

4 FRACTIONAL–ORDER CONTROL

4.1 Preliminary consideration

As we mentioned in introduction, we can also find
works dealing with the application of the fractional cal-
culus tool in control theory, but these works have usually
theoretical character, whereas the number of works, in
which a real object is analyzed and the fractional - or-
der controller is designed and implemented in practice, is
very small. The main reason for this fact is the difficulty
of controller implementation. This difficulty arises from
the mathematical nature of fractional operators, which,
defined by convolution and implying a non-limited mem-
ory, demand hard requirements of processors memory and
velocity capacities.
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Fig. 8. Comparison of characteristics for both models of a DC motor: Bode plots of the motor models (left), Comparison of characteristics
for both models of a DC motor (right)

Fig. 9. Feedback control loop

4.2 Fractional-order controllers

The fractional-order PIλDδ controller was proposed
as a generalization of the PID controller with integrator
of real order λ and differentiator of real order δ . The
transfer function of such type the controller in Laplace
domain has form [38]:

C(s) =
U(s)

E(s)
= Kp + Ki s−λ + Kd sδ, (λ, δ > 0) , (22)

where Kp is the proportional constant, Ki is the inte-
gration constant and Kd is the differentiation constant.

Transfer function (22) corresponds in discrete domain
with the discrete transfer function in the following ex-
pression [46]:

C(z−1) =
U(z−1)

E(z−1)
= Kp + Ki(ω(z−1))−λ+ Kd(ω(z−1))δ,

(23)
where λ and δ are arbitrary real numbers.

Taking λ = 1 and δ = 1, we obtain a classical PID
controller. If δ = 0 and Kd = 0, we obtain a PIλ

controller, etc. All these types of controllers are particular

cases of the PIλDδ controller, which is more flexible
and gives an opportunity to better adjust the dynamical
properties of the fractional-order control system.

There are many another considerations of the frac-
tional-order controller. For example we can notice the
CRONE controller [29], the non-integer integral and its
application to control [24] or the TID compensator [20],

which has a similar structure as a PID controller but the

proportional component is replaced with a tilted compo-

nent having a transfer function s to the power of (−1/n).

All those fractional-order controllers are sometimes

called optimal phase controllers because only with non-

integer order we can get a constant phase somewhere be-

tween 0o and −180o depending on the parameters λ and

δ .

4.3 Fractional-order controller design

For the FOC design we will use an idea which was

proposed by Bode [7] and for first time used to the motion

control described by Tustin [43]. This principle was also

used by Manabe to induction motor speed control [25].

The several methods and tuning techniques for the

FOC parameters were developed during the past ten

years. They are based on various approaches (see [5], [13],

[22], [26], [31], [49], [52]).

In Fig. 9 is depicted feedback control loop, where C(s)

is transfer function of controller and GDCM (s) is transfer

function of the DC motor.

We will design the controller, which give us a step re-

sponse of feedback control loop with overshoot indepen-

dent of payload changes (iso-damping). In the frequency

domain point of view it means phase margin independent

of the payload changes.

Phase margin of controlled system is [9], [48]

Φm = arg [C(jωg)GDCM (jωg)] + π , (24)

where jωg is the crossover frequency. Independent phase

margin means in other words constant phase. This can

be accomplished by controller of the form

C(s) = k1
k2s + 1

sµ
, k1 = 1/KDCM , k2 = τ . (25)
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Fig. 10. Characteristics of fractional order transfer function (28): Bode plots – continuous and discrete models n = 5, a = 1/3, and
T = 0.1 s (left), Unit step responses –continuous and discrete models n = 5, a = 1/3, and T = 0.1 s (right)

Fig. 11. Simulink block nipid - fractional order controller

Fig. 12. Simulink model for feedback control of the DC motor

Such controller gives a constant phase margin and ob-
tained phase margin is

Φm = arg [C(jω)GDCM (jω)] + π

= arg

[
k1KDCM

(jω)(1+µ)

]
+ π

= arg
[
(jω)−(1+µ)

]
+ π = π − (1 + µ)

π

2
. (26)

For our parameters of controlled object (20) and de-
sired phase margin Φm = 45o , we get the following con-
stants of the fractional order controllres (25): k1 = 12.5,
k2 = 0.05 and µ = 0.5. With these constants we obtain

a fractional IλDδ controller, which is a particular case of
the PIλDδ controller and has the form

C(s) =
τ

KDCM

s0.5 +
1

KDCMs0.5

= Kds
0.5 + Kis

−0.5 = 0.625
√

s +
12.5√

s
, (27)

where Ki = 12.5, Kd = 0.625 and δ = λ = 0.5.

According to relation (26), by using a controller (27),
we can obtain a phase margin

Φm = arg [C(jω)GDCM (jω)] + π = π − (1.5)
π

2
= 45◦,

which was desired phase margin specification.

5 SIMULATION RESULTS

The transfer function of the closed feedback control
loop with the fractional-order controller (27) and the DC
motor (20) has the following form:

Gc(s) =
Go(s)

1 + Go(s)
=

GDCM (s)C(s)

1 + GDCM (s)C(s)

=
0.05s + 1

0.05s2.5 + s1.5 + 0.05s + 1
, (28)

where Go(s) is the transfer function of the open control
loop with

Go(s) =
0.05s + 1

0.05s2.5 + s1.5
.

The feedback control loop described above can be sim-
ulated in Matlab environment with using the approxima-
tion technique described before, namely Oustaloup’s re-
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Fig. 13. Comparison of unit step responses of a feedback control loop: Unit step response without actuator saturation overshoot ≈ 30%,
set. time ≈ 11 s (left), Unit step response with actuator saturation overshoot ≈ 40 %, settling time ≈ 14 s (right)

cursive approximation function ora foc() for the desired
frequency range given in (10).

close all; clear all;

Gs DCM=tf([0.08],[0.05 1 0]);

Cs=(0.625*ora foc(0.5,6,0.001,1000))

+(12.5*ora foc(-0.5,6,0.001,1000));

Gs close=(Gs DCM*Cs)/(1+(Gs DCM*Cs));

step(Gs close,15);

Gs open=(Gs DCM*Cs);

bode(Gs open);

[Gm,Pm] = margin(Gs open);

The results obtained via described Matlab scripts are
depicted in Fig. 10. Continues model is shown with solid
line. Phase margin is Φm ≈ 44.9◦ and gain margin is
infinite.

The disrete version of the continues fractional order
transfer function can be obtained with using the digital
operator (13) and Matlab function for approximation of
digital fractional order derivative/integral dfod1(). As-
sume that T = 0.1 s and a = 1/3.

close all; clear all;

T=0.1;

a=1/3;

z=tf(’z’,T,’variable’,’z^-1’)

Hz=((1+a)/T)*((1-z^-1)/(1+a*z^-1));

Gz DCM=0.08/(Hz*(0.05*Hz+1));

Cz=0.625*dfod1(5,T,a,0.5)+12.5*dfod1(5,T,a,-0.5);

Gz close=(Gz DCM*Cz)/(1+(Gz DCM*Cz));

step(Gz close,15);

Gz open=(Gz DCM*Cz);

bode(Gz open);

[Gm,Pm] = margin(Gz open);

The results obtained via described Matlab scripts are
depicted in Fig. 10. Discrete model is shown with dashed
line. Phase margin is Φm ≈ 45.1◦ and gain margin is
infinite.

Simulation of the closed feedback loop can also be
dome in Matlab/Simulink environment, where fractional
- order controller is realized via nipid block proposed by

D. Valerio [44], where block parameters are depicted in
Fig. 11.

General Simulink model is shown in Fig. 12. Block
constants were set according to parameters of DC motor
and fractional-order controller.

Time domain simulation results for fractional order
feedback loop are depicted in Fig. 13. Obtained results
are comparable with the results obtained with simulation
in Matlab by routines.

Stability analysis is investigated by solving the char-
acteristic equation of transfer function (28) with using
Matlab function solve()

s=solve(’0.05*s^2.5 + s^1.5 + 0.05*s + 1 = 0’,’s’)

with the following results: s1,2 = −0.5 ± 0.86602j and
s3 = −20. It means that feedback control loop is stable.

As we can observe in Fig. 13, the quality indexes (over-
shoot and settling time) are worse in the case of control
loop with saturation, because of controller power limita-
tions.

Fig. 14. Actuator for the DC motor

6 PROPOSED REALIZATIONS OF FOC

Basically, there are two methods for realization of the
FOC. One is a digital realization based on processor de-
vices and appropriate control algorithm and the second
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Fig. 15. Proposal for digital implementation of the FOC: Block diagram of the digital fractional-order controller based on PIC processor
(left), Block diagram of the canonical representation of IIR filter form (right)

one is an analogue realization based on analogue circuits
so-called fractance. In this section is described both of
them.

In Fig. 14 is depicted the actuator for connection the
DC motor to the FOC.

6.1 Digital realization: Control algorithm and

HW

This realization can be based on implementation of the
control algorithm in the processor devices, e.g.: PLC con-
troller [35], processor C51 or PIC [33], PCL IO card [47],
etc. Suppose that processor PIC18F458 is used [55]. Some
experimental measurements with this processor were al-
ready done in [33].

Generally, the control algorithm is be based on canon-
ical form of IIR filter, which can be expressed as follow

F (z−1) =
U(z−1)

E(z−1)
=

b0 + b1z
−1 + b2z

−2 + · · · + bMz−M

a0 + a1z−1 + a2z−2 + · · · + aNz−N
, (29)

where a0 = 1 for compatible with the definitions used in
Matlab. Normally, we choose M = N .

For designed fractional-order controller (27) we can use
the half-order approximations (16) and (17), respectively.
The resulting discrete transfer function of the fractional-
order controller arranged to canonical form (29) is repre-
sented as

C(z−1) =
(
23.17 − 61.33z−1 + 55.87z−2 − 18.52z−3

+ 0.268z−4 + 0.560z−5 + 0.032z−6
)/(

1.00 − 2.00z−1

+ 1.11z−2 − 0.111z−4 + 0.0082z−5 + 0.0014z−6
)

(30)

This controller can be directly implemented to any pro-
cessor based devices as for instance PLC or PIC depicted
in Fig. 15 left. A direct form of such implementation using

canonical form shown in Fig. 15 right with input e(k) and
output u(k) range mapping to the interval 0−UFOC [V]
is divided into two sections: initialization code and cyclic

code. Pseudocode has the following syntax

(* initialization code *)

scale := 32752; % input and output

order := 6; % order of approximation

U FOC := 5; % input and output voltage range: 5[V], 10[V],
...

a[0] := 1.0; a[1] := -2.0; a[2] := 1.11; a[3] := 0.0;

a[4] := -0.111; a[5] := 0.0082; a[6] := 0.0014;

b[0] := 23.17; b[1] := -61.33; b[2] := 55.87; b[3] := -18.52;

b[4] := 0.268; b[5] := 0.560; b[6] := 0.032;

loop i := 0 to order do

s[i] := 0;

endloop

(* cyclic code *)

in := (REAL(input)/scale) * U FOC;

feedback := 0; feedforward := 0;

loop i:=1 to order do

feedback := feedback - a[i] * s[i];

feedforward := feedforward + b[i] * s[i];

endloop

s[0] := in + a[0] * feedback;

out := b[0] * s[1] + feedforward;

loop i := order downto 1 do

s[i] := s[i-1];

endloop output := INT(out*scale)/U FOC;

Fig. 16. Finite ladder circuit
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Fig. 17. Analogue fractional-order PIλDδ controller

The disadvantage with this solution is that the com-
plete controller is calculated using floating point arith-
metic.

There are many softwares for PIC programming. As
for example: Microchip MPLAB, HiTech C Compiler,
PICBasic Pro, etc.

6.2 Analogue realization: Fractance circuits and

fractor

A circuit exhibiting fractional-order behavior is called
a fractance [39]. The fractance devices have the follow-
ing characteristics [27], [28], [18]. First the phase angle
is constant independent of the frequency within a wide
frequency band. Second it is possible to construct a fil-
ter which has moderated characteristics which can not be
realized by using the conventional devices.

Generally speaking, there are three basic fractance de-
vices. The most popular is a domino ladder circuit net-
work. Very often used is a tree structure of electrical ele-
ments and finally, we can find out also some transmission
line circuit. Here we must mention that all basic electrical
elements (resistor, capacitor and coil) are not ideal [10],
[54].

Design of fractances can be done easily using any of the
rational approximations [36] or a truncated CFE, which
also gives a rational approximation.

Truncated CFE does not require any further trans-
formation; a rational approximation based on any other
methods must be transformed to the form of a continued
fraction. The values of the electric elements, which are
necessary for building a fractance, are then determined
from the obtained finite continued fraction. If all coeffi-
cients of the obtained finite continued fraction are posi-
tive, then the fractance can be made of classical passive
elements (resistors and capacitors). If some of the coeffi-
cients are negative, then the fractance can be made with
the help of negative impedance converters [37].

Domino ladder lattice networks can approximate frac-
tional operator more effectively than the lumped net-
works [17].

Let us consider the circuit depicted in Fig. 16, where
Z2k−1(s) and Y2k(s), k = 1, . . . , n , are given impedances
of the circuit elements. The resulting impedance Z(s) of
the entire circuit can be found easily, if we consider it in
the right-to-left direction:

Z(s) = Z1(s)+

1

Y2(s) +
1

Z3(s) +
1

Y4(s) +

1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Y2n−2(s) +
1

Z2n−1(s) +
1

Y2n(s)

(31)

The relationship between the finite domino ladder net-
work, shown in Fig. 16, and the continued fraction (31)
provides an easy method for designing a circuit with
a given impedance Z(s). For this one has to obtain
a continued fraction expansion for Z(s). Then the ob-
tained particular expressions for Z2k−1(s) and Y2k(s),
k = 1, . . . , n , will give the types of necessary components
of the circuit and their nominal values.

Rational approximation of the fractional integrator/
differentiator can be formally expressed as

s±α ≈
{ Pp(s)

Qq(s)

}

p,q
= Z(s) , (32)

where p and q are the orders of the rational approxi-
mation, P and Q are polynomials of degree p and q ,
respectively.

For direct calculation of circuit elements was proposed
method by Wang [53]. This method was designed for con-
structing resistive-capacitive ladder network and trans-
mission lines that have a generalized Warburg impedance
As−α , where A is independent of the angular frequency
and 0 < α < 1. This impedance may appear at an elec-
trode/electrolyte interface, etc. The impedance of the lad-
der network (or transmission line) can be evaluated and
rewritten as a continued fraction expansion:

Z(s) = R0 +
1

C0s+

1

R1+

1

C1s+

1

R2+

1

C2s+
. . . (33)

If we consider that Z2k−1 ≡ Rk−1 and Y2k ≡ Ck−1 for
k = 1, . . . , n in Fig. 16, then the values of the resistors
and capacitors of the network are specified by

Rk = 2hαP (α)
Γ(k + α)

Γ(k + 1 − α)
− hαδko

Ck = h1−α(2k + 1)
Γ(k + 1 − α)

P (α)Γ(k + 1 + α)
,

P (α) =
Γ(1 − α)

Γ(α)
,

(34)

where 0 < α < 1, h is an arbitrary small number, δko is
the Kronecker delta, and k is an integer, k ∈ [0,∞).
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In Fig. 17 is depicted an analogue implementation of
fractional-order PIλDδ controller. Fractional order dif-
ferentiator is approximated by general Warburg impedan-
ce Z(s)d and fractional order integrator is approximated
by impedance Z(s)i , where orders of both approxima-
tions are 0 < α < 1. For orders greater than 1, the War-
burg impedance can be combined with classical integer
order one. Usually we suppose R2 = R1 in Fig. 17. For
proportional gain Kp we can write the formula

Kp =
R3

R4
.

The integration and derivation constants Ki and Kd can
be computed from relationships

Ki =
Z(s)i

Ri

, Kd =
Rd

Z(s)d

.

In the case, if we use identical resistors (R -series) and
identical capacitors (C -shunt) in the fractances, then the
behavior of the circuit will be as a half-order integra-
tor/differentiator. Realization and measurements of such
kind controllers were done in [36]. Some others experi-
mental results we can find in [11].

Instead fractance circuit the new electrical element
introduced by G. Bohannan which is so-called fractor can
be used as well [8]. This element — fractor made from a
material with the properties of LiN2 H5 SO4 has been
already used for temperature control [5].

7 CONCLUSION

In this paper was presented a case study of frac-
tional order feedback control of a DC motor. Described
method is based on Bode’s ideal control loop. Design
algorithm for fractional-order PIλDδ controller param-
eters uses a phase margin specification of open con-
trol loop. Another very important advantage is an iso-
damping property of such control loop. Simulation results
obtained via Matlab/Simulink confirm the described the-
oretical suggestion. This article also proposed digital and
analogue realization of fractional-order controller. De-
scribed techniques are useful for practical implementation
of fractional-order controllers as the non-conventional
control techniques. However this approach also gave a
good start for analysis and design of the analog fractional
order controller. The fractional-order controller gives us
an insight into the concept of memory of the fractional
order operator. The design, realization, and implementa-
tion of the fractional order control systems also became
possible and much easier than before.
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