advanced
Journal Information
Journal Information

   Description
   Editorial Board
   Guide for Authors
   Ordering

Contents Services
Contents Services

   Regular Issues
   Special Issues
   Authors Index

Links
Links

   FEI STU Bratislava    deGruyter-Sciendo

   Feedback

[3, 2023] 

Journal of Electrical Engineering, Vol 74, 3 (2023) 140-153, https://doi.org/10.2478/jee-2023-0020

Detecting abnormal behavior in megastore for intelligent surveillance through 3D deep convolutional model

Mohd. Aquib Ansari – Dushyant Kumar Singh – Vibhav Prakash Singh

   The use of neural networks in a range of academic and scientific pursuits has introduced a great interest in modeling human behavior and activity patterns to recognize particular events. Various methods have so far been proposed for building expert vision systems to understand the scene and draw true semantic inferences from the observed dynamics. However, classifying abnormal or unusual activities in real-time video sequences is still challenging, as the details in video sequences have a time continuity constraint. A cost-effective approach is still demanding and so this work presents an advanced three-dimensional convolutional network (A3DConvNet) for detecting abnormal behavior of persons by analyzing their actions. The network proposed is 15 layers deep that uses 18 convolutional operations to effectively analyze the video contents and produces spatiotemporal features. The integrated dense layer uses these features for the efficient learning process and the softmax layer is used as the output layer for labeling the sequences. Additionally, we have created a dataset that carries video clips to represent abnormal behaviors of humans in megastores/shops, which is a consequent contribution of this paper. The dataset includes five complicated activities in the shops/megastores: normal, shoplifting, drinking, eating, and damaging. By analyzing human actions, the proposed algorithm produces an alert if anything like abnormalities is found. The extensive experiments performed on the synthesized dataset demonstrate the effectiveness of our method, with achieved accuracy of up to 90.90%.

Keywords: Video Surveillance, Human Detection, Human activity recognition (HAR), Abnormal behavior, 3D Convolutional Neural Network (CNN), Deep Neural Architecture


[full-paper]


© 1997-2023  FEI STU Bratislava