advanced
Journal Information
Journal Information

   Description
   Editorial Board
   Guide for Authors
   Ordering

Contents Services
Contents Services

   Regular Issues
   Special Issues
   Authors Index

Links
Links

   FEI STU Bratislava    deGruyter-Sciendo

   Feedback

[3, 2024] 

Journal of Electrical Engineering, Vol 75, 3 (2024) 181-191, https://doi.org/10.2478/jee-2024-0022

Artificial neural network-based method for overhead lines magnetic flux density estimation

Ajdin Alihodžić – Adnan Mujezinović – Emir Turajlić

   This paper presents an artificial neural network (ANN) based method for overhead lines magnetic flux density estimation. The considered method enables magnetic flux density estimation for arbitrary configurations and load conditions for single-circuit, multi-circuit, and also overhead lines that share a common corridor. The presented method is based on the ANN model that has been developed using the training dataset that is produced by a specifically designed algorithm. This paper aims to demonstrate a systematic and comprehensive ANN-based method for simple and effective overhead lines magnetic flux density estimation. The presented method is extensively validated by utilizing experimental field measurements as well as the most commonly used calculation method (Biot - Savart law based method). In order to facilitate extensive validation of the considered method, numerous magnetic flux density measurements are conducted in the vicinity of different overhead line configurations. The validation results demonstrate that the used method provides satisfactory results. Thus, it could be reliably used for new overhead lines' design optimization, as well as for legally prescribed magnetic flux density level evaluation for existing overhead lines.

Keywords: artificial neural network, field measurements, magnetic flux density, overhead lines, validation


[full-paper]


© 1997-2023  FEI STU Bratislava