advanced
Journal Information
Journal Information

   Description
   Editorial Board
   Guide for Authors
   Ordering

Contents Services
Contents Services

   Regular Issues
   Special Issues
   Authors Index

Links
Links

   FEI STU Bratislava    deGruyter-Sciendo

   Feedback

[4, 2019] 

Journal of Electrical Engineering, Vol 70, 4 (2019) 273-284 DOI: 10.2478/jee-2017-0057

Investigation of error performance in network coded MIMO-VBLAST wireless communication systems

Ali Farzamnia – Ngu War Hlaing – Lillian Eda Kong – Manas Kumar Haldar
– Tohid Yousefi Rezaii

   Paper aims to enhance the performance of bit error rate (BER) in wireless communication based on the multiple-input multiple-output (MIMO) system of vertical Bell laboratories layered space-time (VBLAST) algorithm. The VBLAST algorithm uses zero-forcing (ZF) and the minimum mean square error (MMSE) to evaluate the BER of wireless communication. MIMO VBLAST techniques function as an adaptive filter and can minimize the interference and multipath fading in the received signal of the channel. Physical layer network coding (PNC) is a new technique used to exploit the spatial diversity of the MIMO VBLAST system to improve the throughput and performance of wireless communication. The bit-error-rate (BER) of proposed VBLAST MIMO with PNC with binary phase-shift keying (BPSK) and quadrature phase-shift keying (QPSK) modulation over the additive white Gaussian noise and Rayleigh fading channel are analyzed. The performance of both BPSK and QPSK modulation in two and four antennas are compared. From the simulation results, it was found that the proposed scheme MIMO VBLAST PNC has a 45.2 % higher BER performance compared to the traditional MIMO scheme with an increase in the BER using MMSE and ZF respectively in both two and four antennas.

Keywords: multiple input multiple output, vertical Bell laboratories layered space-time, zero forcing, minimum mean square error, physical layer network coding


[full-paper]


© 1997-2023  FEI STU Bratislava