advanced
Journal Information
Journal Information

   Description
   Editorial Board
   Guide for Authors
   Ordering

Contents Services
Contents Services

   Regular Issues
   Special Issues
   Authors Index

Links
Links

   FEI STU Bratislava    deGruyter-Sciendo

   Feedback

[4, 2024] 

Journal of Electrical Engineering, Vol 75, 4 (2024) 285-296, https://doi.org/10.2478/jee-2024-0035

Artificial neural network-based sparse channel estimation for V2V communication systems

Eman Abdel Rahim – Mohamed Hassan Essai – Ehab K. I. Hamad

   Artificial neural networks (ANNs) have gained a lot of attention from researchers in the past few years and have been employed on a large scale. They have also been gaining momentum in wireless communication systems. For efficient vehicle-to-vehicle (V2V) channel communication, a sparse multipath channel issue must be studied. To minimize the multipath effect, a time reversal (TR) operation and time division synchronization orthogonal frequency division multiplexing (TDS-OFDM) have been appealing because of their fast synchronization and active spectral efficiency. To improve the transceiver's execution in a frequency-selective fading channel environment, an OFDM system is used to reduce inter- symbol interference (ISI). Simultaneous Orthogonal Matching Pursuit (SOMP) channel state estimator algorithm suffer from high computational cost and high computational complexity. The ANN algorithm has better performance than SOMP algorithm. The proposed neural network technologies have lower complexity than the SOMP algorithm. The application of ANN is capable of solving complex problems, such as those encountered in image, signal processing and have been implemented for channel estimation in OFDM. The proposed ANN outperformed the SOMP algorithm with regard to signal compensation. Overall, the ANN algorithm achieved the best performance. This study proposes an ANN-based sparse channel state estimator. Regarding the bit error rate (BER) metric, the proposed estimator outperforms the channel estimation approach based on the SOMP. The simulation results confirm the efficacy of the proposed approach.

Keywords: artificial neural networks, time reversal, orthogonal frequency division multiplexing, channel estimation, compressive sensing, simultaneous orthogonal matching pursuit


[full-paper]


© 1997-2023  FEI STU Bratislava