Journal Information
Journal Information
   Editorial Board
   Guide for Authors

Contents Services
Contents Services
   Regular Issues
   Special Issues
   Authors Index

   FEI STU Bratislava
   SAS Bratislava


[6, 2019] 

Journal of Electrical Engineering, Vol 70, 6 (2019) 443-453 DOI: 10.2478/jee-2019-0077

Human action recognition using descriptor based on selective finite element analysis

Rajiv Kapoor – Om Mishra – Madan Mohan Tripathi

   This paper proposes a novel local descriptor evaluated from the Finite Element Analysis for human action recognition. This local descriptor represents the distinctive human poses in the form of the stiffness matrix. This stiffness matrix gives the information of motion as well as shape change of the human body while performing an action. Initially, the human body is represented in the silhouette form. Most prominent points of the silhouette are then selected. This silhouette is discretized into several finite small triangle faces (elements) where the prominent points of the boundaries are the vertices of the triangles. The stiffness matrix of each triangle is then calculated. The feature vector representing the action video frame is constructed by combining all stiffness matrices of all possible triangles. These feature vectors are given to the Radial Basis Function-Support Vector Machine (RBF-SVM) classifier. The proposed method shows its superiority over other existing state-of-the-art methods on the challenging datasets Weizmann, KTH, Ballet, and IXMAS.

Keywords: finite element analysis (FEA), stiffness matrix, discretization, support vector machine


© 1997-2021  FEI STU Bratislava