advanced
Journal Information
Journal Information

   Description
   Editorial Board
   Guide for Authors
   Ordering

Contents Services
Contents Services

   Regular Issues
   Special Issues
   Authors Index

Links
Links

   FEI STU Bratislava    deGruyter-Sciendo

   Feedback

[5, 2023] 

Journal of Electrical Engineering, Vol 74, 5 (2023) 365-373, https://doi.org/10.2478/jee-2023-0044

Performance analysis of speech enhancement using spectral gating with U-Net

Jharna Agrawal – Manish Gupta – Hitendra Garg

   Many speech processing systems’ crucial frontends include speech enhancement. Single-channel speech enhancement experiences a number of technological challenges. Due to the advent of cloud-based technology and the use of deep learning systems in big data, deep neural networks in particular have recently been seen as a potent means for complex classification and regression. In this work, spectral gating noise filter is combined with deep neural network U-Net to enhance the performance of speech enhancement network. Further, for performance analysis three distinct objective functions namely, Mean Square Error, Huber Loss and Mean Absolute Error are considered as loss functions. In addition, comparison of three different optimizers Adam, Adagrad and Stochastic Gradient Descent is presented. Proposed system is tested and evaluated on LibriSpeech and NOIZEUS datasets and compared to other state-of-the-art systems. It demonstrates that, in comparison to other state-of-the-art models, the proposed network outperformed them with PESQ scores of 2.737420 for training and 2.67857 for testing, along with better generalization ability.

Keywords: speech enhancement, spectral gating, deep neural network, U-Net, optimizers


[full-paper]


© 1997-2023  FEI STU Bratislava